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ABSTRACT

The signal subspace approach for enhancing speech signals
degraded by uncorrelated additive noise is studied. The un-
derlying principle is to decompose the vector space of the
noisy signal into a signal plus noise subspace and a noise
subspace. Enhancement is performed by removing the noise
subspace and estimating the clean signal from the remain-
ing signal subspace. e decomposition can theoretically
be performed by applying the Karhunen-Loé&ve transformto
the noisy signal. Linear estimation of the clean signal is
performed using a perceptually meaningful estimation cri-
terion. The estimator is designed by minimizing signal dis-
tortion for a fixed desired spectrum of the residual noise.
This criterion enables masking of the residual noise by the
speech signal. The filter is implemented as a gain function
which modifies the KLT components corresponding to the
signal subspace. The gain function is solely dependent on
the desired spectrum of the residual noise. Listening tests
indicate that 14 out of 16 listeners strongly preferred the
proposed approach over the spectral subtraction approach.

1. INTRODUCTION

The signal subspace approach for enhancing speech signals
degraded by uncorrelated additive noise was introduced in
[1]-[2]. It utilizes the fact that speech vectors lie in a sub-
space of the Euclidean space of the noisy si while vec-
tors of white noise occupy the entire space. Thus, the vector
space of the noisy signal can be decomposed into a signal
plus noise subspace and a noise subspace. Speech enhance-
ment can be performed by eliminating the noise subspace
and extracting the signal from the less noisy signal -sub-
space. Decomposition of the vector space of the noisy sig-
nal is performed by applying the Karhunen-Lotve trans-
form(KLT) to the noisy signal. The aill)roach is applicable
to non-white noise sources using prewhitening.

A linear estimator which minimizes signal distortion
while maintaining the residual noise below some prescribed
level was developed in [1]. The estimator was shown to
be a Wiener filter with adjustable input noise level. The
estimator was implemented as a gain function which mod-
ifies the KLT components corresponding to the signal sub-
space. It was shown in [2] that the proposed estimator, and
the spectral subtraction estimator which uses the Wiener
gain function with adjustable input noise level, are asymp-
totically equivalent (in probability) under stationary and
ergodic conditions when the frame length goes to infinity.
Thus, optimality conditions were attributed to the heuristic
spectral subtraction approach.

In this paper a second more perceptually meaningful lin-
ear estimator is developed ang tested in speech enhance-
ment. This estimator aims at minimizing signal distortion
while controlling the spectrum of the residual noise. This
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strategy allows shaping the spectrum of the residual noise
80 as to minimize its effects. The new estimator was found
significantly better that the old estimator and the spectral
subtraction approach. It provides enhanced signals with
clarity similar to that obtained with the spectral subtrac-
tion approach but with drastically reduced musical residual
noise. The new estimator was judged significantly better
than the spectral subtraction approach by 14 out of 16 lis-
teners for 98% of the sentences.

2. SIGNAL SUBSPACE PRINCIPLES

In this section the principles of the signal subspace approach
are reviewed. We assume that covariance matrices of sp
vectors are positive semidefinite since most speech covari-
ance matrices have some eigenvalues which are close to zero.
The covariance matrix of the noise is assumed known. Thus,
without loss of generality, the noise is assumed white, since
knowledge of its covariance enables whitening the noise.

Let y, w and 2 denote, respectively, K —dimensional vec-
tors of the clean, noise and noisy signals. Since the noise
is assumed additive and uncorrelated with the signal, the
covariance matrix of z is given by

R.,2E{z2*} = R, + Ru. (1

Let R, = UA,U* be the eigendecomposition of R,. Here
U g[u;, ..., ux] denotes an orthogonal matrix of eigenvec-

tors {ux € R¥} of R,, and A,=diag(As(1), ..., As(K)) de-
notes a diagonal matrix of eigenvalues of R,. Since the
noise is assumed white, the eigenvectors of R, are also the
eigenvectors of both Ry and R.. Furthermore, all eigen-
values of Ry o3,. Since rank IéR,R{: M, the matrix
Ry has M positive eigenvalues and K — M zero eigenvalues.
Assume without loss of generality that the M positive eigen-
values of Ry are {Ay(1),...,Ay(M ); and the con‘esponging
M eigenvectors are {uy,...,un}. For convenience, assume
that {Ay(1),...,Ay(M)} are given in a descending order.
Multiplying (1) by ux, which 1 the common kth eigenvec-
tor of the three covariance matrices, we obtain

_ [ N®+A ifk=1...,M
A-(k)—{ ,i fk=M+1,..., K. (2)

Thus, the eigendecomposition of R, is given by

R, =UAU* ®
A, = diag[As,05]] 4
As1Sdiag(Aa(1), .. ., A:(M)), (5)
and the eigendecomposition of Ry is given by
R, =UAU* G)
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A, = diaglAy,,01) ™

Ay = diag(Ay(1),..., A(M))
= Agy~0o5l (8)
The eigenvalues in A, and their corresponding el;fenvec-
tors are referred to as the principal eigenvalues and eigen-
vectors of R,, respectively.

Let U = [U,,Us] where U} denotes the K’ x M matrix of
principal eigenvectors of R, i.e.,

U = {ux : As(k) > 03} 9)
Since U is orthogonal,
I=U U} + UL (10)

The matrix U1Uf is idempotent and Hermitian. Hence,
it is the orthogonal projector onto the subspace spanned
by the columns of U;. But span U; = span [3, p.

454]. Hence, U,U? is the orthogonal projector onto the
signal subspace. e complementary orthogonal subspace
is spanned by columns of U; and it constitutes the noise

subspace. The matrix UzU,# is the orthogonal projector on

that subspace. Thus, from (10), a vector z of the noisy
signal can be decomposed as

z=UU¥z+ DU, (11)

where U;Ul# z is the projection of z onto the signal sub-
space and Uz U,# z is the projection of 2 onto the noise sub-
space. The coefficient vectors of the two projections, Ul# z
and U¥z, respectively, are obtained from U¥z which is the
KLT of z. Note that since

E{U*z} =0

cov(U*2) = diag[Ay,s + 021, 001], (12)
cov(U¥z) = o3I, and the signal energy in the vector U¥z

is zero. Hence, with probability one (w.p.1), this vector
does not contain signal information, and can be nulled when

estimating the clean signal.

3. LINEAR SIGNAL ESTIMATORS

Let § = Hz be a linear estimator of y where His a K x K
matrix. The residual signal obtained in this estimation is
given by

g-vy

(H-Dy+ Hw

ry + rw, (13)

i n

where ryé(H — I)y represents signal distortion and re=Hw
represents the residual noise. Let -

G2trE{r,r}} = te{(H - DR, (H - D*}  (14)

}'ae the energy of the signal distortion vector ry. Similarly,
et

zétrE{rw ) = A {HH*} (15)

denote the energy of the residual noise vector ry. The linear

estimator derived in [1] imposes a time domain constraint
(tdc) on the residual noise and it was obtained from

minyzz
(16)

subject to 14l < aol,

where 0 < a < 1. The estimator derived in this way mini-
mizes the signal distortion over all linear filters which result
in the permissible residual noise level ao?,. The optimal es-
timator in this sense is given by

Huae = Ry(Ry + o)™, )
where 4 is the Lagrange multiplier obtained from
a= %tr{R:(R, +uos )73} (18)

Hence, the optimal filter (17) is a Wiener filter with ad-
justable input noise level uo3,.

Applying the eigendecomposition (6) of Ry to (17), we
can re-write the optimal linear estimator as:

Hee = UG UE (19)

where a
GP=AU-1(A%1 + “c:’I)-l' (20)
In this paper a linear estimator which minimizes the sig-
nal distortion subject to spectral domain constraints (sdc)
on the residual noise is derived. The spectrum of the resid-
ual noise is made similar to that of the speech, and thus the
residual noise can be masked by the speech signal. The kth
spectral component of the residual noise is given by utrw.
For k = 1,... M, we require that the energy in ufr,., be
smaller than or equal to axo3, where 0 < ax < 1. For
k= M+1,... K, we require that the eneriy in utr,,, be
zero, since the si energy in the noise subspace 1s zero.
Hence, the filter H is designed by

ming a
Efjugral’} <
E{|u} rel’} =
(21:

Following an optimization procedure similar to that
in the time domain constrained problem, while taking into
account that the matrix H may now have complex entries, it

can be shown that the optimal H must satisfy the following
gradient matrix equation

HR,+ ¢ LH ~ R, =0, (22)

ka?ﬂt k=1)"”M

. a
subject to : 0, k=M+1, K.

A

where L=UA,U* and A, = diag(p1,- -+, pKk) is a diagonal
matrix of Lag“r multi‘pliers. }.pp’lyin’g thl eigendecom-
position (6) of Ry to (22) we obtain,

(I—-Q)Ay - 0LALQ =0, (23)

where Q2U* HU. A possible solution to (23) is obtained
when Q is diagonal with elements given by

—a® k=1, M
= Py k+. geoey 24
e { O M4l K. (24)
For this Q we have
3 k=1,...
Blufrfy={ gv% FZh™ o @)

If the non-zero constraints in (21) are satisfied with equality
then a2,¢3, = axo? implies that

qkk = (ak)”zy k=1,...,.M (26)
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and

Ay(k
ur = %{(1/”)‘/’ -1, k=1,...,.M. (27
w
Since px > 0, the Kuhn-Tucker necessary conditions for
the constrained minimization are satisfied by the proposed
solution (24). Hence from (24) and (26) we conclude that
the desired H is given by

H=UQU*
Q=<jias(qu,--',qxx)
1/2 _
qu={ al® k=1,...,.M

0" k=M¥1,..,K

From (28) we see that the choice of {ax} completely spec-
ifies the gains of the estimator. This is not surprising since
the estimator is linear and the spectra of its input and out-
put signals are known. The input noise is white with spec-
trum &3,, and the non-zero spectrum of the output residual
noise is axo3,. In theory {ax} can be chosen independently
of the statistics of the si and noise. In this case, the
second order statistics of the signal and noise affect the es-
timator through the KLT only. This is a dual situation to
that exists in the spectral subtraction approach where the
second order statistics of the signal and noise affect only
the gain function of the estimator while the transform (i.e.,
the DFT) is signal independent.

A possible choice for ay is .

Ay (k)

= ()

where ¥ > 1 and u > 0 are experimentally determined
constant. This choice makes the spectrum of the residual
noise look similar to that of the clean signal. It is interesting
to note that this gain function has been commonly used in
the spectral subtraction approach [:&

An alternative choice for ax which results in a more ag-
gressive noise suppression gain function is given by

ax = exp{—vad, /2y (k)}

where v > 1 is an experimentally chosen constant. The
value of v controls the suppression level of the noise as well
as the resulting signal distortion. The motivation for choos-
ing this gain function is that for v = 2, the first order Tay-

lor approximation of a:” ? is precisely the inverse of the
Wiener gain function (20 with u = 1). Hence, we refer to

this function as generalized Wiener gain function.

4. IMPLEMENTATION AND EVALUATION

4.1. Implementation

The sdc estimator (28) is significantly easier to implement
than the tdc estimator since the Lagrange multipliers were
analytically calculated. This estimator is also significantly
more powerful than the tdc estimator since it allows con-
straints in the perceptually significant spectral domain. In
addition, the tcd can be considered a particular case of the
sdc [2]. For the given choice of gain function (30), the es-
timator (28) depends only on one fixed parameter » whose
value was experimentally chosen to be v = 5.

In implementing the linear si estimators one must
have good estimates of R,, and R.,, the covariance matri-
ces of the vectors of the noisy signal and the noise process
at time ¢, respectively. Furthermore, a good estimate of the
dimension M, of the signal subspace at time ¢ is required.
Other parameters which must be specified are those char-
acterizing the analysis conditions, i.e., the frame length K,

(28)

(29)

(30)
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the overlap duration between adjacent frames, the type of

sis and synthesis windows, and the number 27 of non-
overlapping K —dimensional vectors of the noisy signal from
which R,, is estimated.

The sdc linear estimator was applied to frames of the
noisy signal which overlapped eacﬁ other by 50%. In
order to preserve the whiteness of the input noise (i.e.,
Ru, = 03 I), only a rectangular analysis window could be
used. The enhanced vectors were Hanning windowed and
combined using the overlap and add synthesis approach. An
empirical Toeplitz covariance estimate R,, was used. This
estimate was constructed from the first K samples of the
biased autocorrelation function estimate. The latter esti-
mate was obtained from 2TK samples of the noisy signal
at instants (t—=T=1)K+1,...,(t+T—1)K. This estimator
was efficiently implemented using the FFT algorithm. The
covariance matrix Ry, is obtained from a set of vectors of
the noisy signal during which speech was absent.

In implementing the empirical Toeplitz covariance esti-
mator, the values of K and T must be chosen. If the speech
signal were strictly stationary, T and K would have been
chosen to be as large as possible. The reasons are that
large KT guarantees good estimate of R,,. In addition, the
improvement in SNR obtained by the signal subspace ap-
proach is proportional to K/M, since the si su e
dimension M is fixed, and the noise is evenly distributed
in the entire K-dimensional space. Since speech signals
are not strictly stationary, however, the values of X and
T are restricted by the following constraints. First, 2TK,
the total number of speech samples used in estimating the
Toeplitz covariance matrix must be smaller than the pe-
riod during which the signal can be considered stationary.
Typically, this number equals 300 — 400 samples at
sampling rate. Second, K > M should be chosen so that
the SNR improvement expected from the existence of the
signal subspace can be utilized. Third, the larger T is the

more accurate R,, is, since on the average there are 2T sam-
ples of the noisy si per each estimated autocorrelation
sample. Finally, K should be chosen small to reduce com-
putational complexity in performing eigendecomposition of
the estimated covariance.

In this work we have obtained best results using T" = 5
and K = 40. This amounts to estimating the covariance
matrix from 400 samples of the noisy signal, For this value
of K, only few frames resulted in estimated M which was
equal to K. This is not a problem since for those frames
the si occupies the entire space and the noise subspace
is null,
Estimaﬁni{M. was performed using the order estimation
’aﬁssroach of Merhav, Gutman and Ziv (see references in [2]).

is approach guarantees minimization of the probability of
underestimation of the order, uniformly for all processes in
the given class, while maintaining exponentially decaying
probability of overestimation of the order. The approach
was applied by Merhav to exponential probability Iamity
functions (pdf’s), and it requires maximum likelihood (ML)
estimation of the parameter set of the model [5]. Hence,
when used here, it is assumed that the pdf of the noise is
exponential, e.g., Gaussian. The estimator for M obtained
in this waﬁ chooses the smallest dimension for which the
energy of the noisy signal in the noise subspace is sufficiently
close to the minimum possible energy of the noisy signal in
that subspace [2].

4.2. Performance Evaluation

The sdc linear estimator and the spectral subtraction esti-
mator were tested and com; in enhancing speech :ig-
nals which have been degraded by computer generated ad-
ditive white Gaussian noise at 10dB input SNR. Speech ma-
terial which consists of two sentences spoken by three male
speakers and three female speakers (total of 12 sentences)



was used. One of the sentences, “why were you away a year
Roy?” contains vowels and glides only, and the other “his
vicious father had seizures” contains fricatives only.

The evaluation was performed by a group of 16 listeners.
Four subjects were individuals working on different aspects
of speech coding and enhancement. These subjects were
familiar with the sentences. The other 12 subjects were
students (6) and professors (6) at George Mason Univer-
sity. The authors were obviously excluded from this test.
These 12 subjects were not familiar with the sentences. All
subjects claimed to have normal hearing. Their age ranged
from 23 to 40 year old.

Each subject participated in two listening sessions. The
goal of the first session was to compare the signal subspace
approach with the plain noisy speech. The goal of the sec-
ond session was to compare the signal subspace approach
with the spectral subtraction approach. In each session,
12 pairs of sentences, each representing two different pro-
cessing methods, were presented to the subjects through
headphones. The subjects were asked to compare the two
sentences and to vote for one of them. The order of the
sentences in each pair was randomized. The comparison
was subjective based on the perceived amount and nature
of residual noise, possible distortion and nature of the pro-
cessed speech, etc. No listening fatigue effects were taking
into account since each session was r$tively short. In com-
paring the two sentences in a pair the subjects could listen
to the pair as many times as they wished. To minimize any
bias, the subjects were not informed which versions of the
speech material they will be comparing.

In the first session, 14 subjects preferred the speech ma-
terial enhanced by the si subspace approach over the
non-processed noisy sp . On the average, the subjects
in this group voted in favor of the signal subspace approach
for 84% of the sentences with standard deviation of 16%.
The general consensus was that the quality of the enhanced
si is far better than that of the raw noisy signal due to
the reduction in the level of the input noise. For those sen-
tences where the enhanced signal was preferred, the benefit
of noise reduction was worth the slight distortion introduced
by the noise removal algorithm. For the other sentences
where the noisy signal was preferred, the distortion in the
enhanced signal was more noticeable and/or the perception
of the noise was tolerable. The 2 subjects who preferred the
noisy signals over the enhanced si did so for 67% of the
sentences on the average, with standard deviation of 12%.
These individuals preferred the “natural” sound of the raw
signal and they were not bothered by the presence of the
noise.

p Iz;;hﬁ secgch;ll sels)sion, the same 14 indivl:duals who pre-
erred the si subspace processing over the raw noisy sig-
nal, also preferred the signal subspace processing over the
spectral subtraction approach. On the average, the signal
subspace approach was preferred for 98% of the sentences
with standard deviation of 4%. The major complaint in
this comparison was the noticeable annoying musical resid-
ual noise in the spectral subtraction approach. Such noise
was not present in the sentences processed by the signal
subspace approach. Nine subjects felt that the two a;

proaches contribute comparable amount of distortion to the
speech signals during the noise removal process. The other
5 subjects felt that some sentences processed by the signal
subspace approach are slightly more muffled than the sen-
tences processed by the spectral subtraction approach. One
subject also indicated that the tonal residual noise in the
spectral subtraction approach may be especially destructive
over the telephone, since it can easily be confused with tonal
signals used in the network. The 2 subjects who preferred
the spectral subtraction processing over the signal subspace
approach did so for 83% of the sentences with standard de-
viation of 12%. These individuals were not bothered by
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the musical noise and felt that the spectral subtraction ap-
proach provides crisper enhanced signals.

The improvement in SNR achieved by the spectral sub-
traction and the signal subspace approach was similar.
The spectral subtraction approached elevated the SNR of
the noisy signal by 4.21 — 6.02dB, and the signal sub-
space app4r3%ch improved the SNR of the noisy signal by
4.22-5.7 .

5. COMMENTS

A novel approach for non-parametric speech enhancement
was developed. The basic principle is to decompose the vec-
tor space of the noisy siﬂﬁ‘ilnto a signal plus noise subspace
and a noise subspace. cement is performed by remov-
ing the noise su e and estimating the signal from the
remaining subspace. Linear estimation is performed with
the goal of minimizing signal distortion while masking the
residual noise by the signal.

The proposaf approach was found useful in interpreting
many aspects of the popular spectral subtraction approach:
1) Asymptotic optimality of a version of the spectral sub-
traction approach in the linear minimum mean square er-
ror sense was proven in [2]. 2) The existence of the signal
subspace was used to explain why nulling of weak spectral
components of the noisy signal is necessary. 3) The esti-
mation criterion proposed here confirms the intuition that
subtracting more noise than actually exists balances sig-
nal distortion and residual noise level as conjectured in the
spectral subtraction literature. Thus this work provides a
theoretical basis for the heuristically derived spectral sub-
traction approach.

The proposed signal subspace approach was judged bet-
ter than the spectral subtraction in our sp ement
application where the noise was additive and white. It pro-
vided enhanced signals with comparable distortion to that
obtained in the spectral subtraction approach but with es-
sentially no musical residual noise.

The major difference between the spectral subtraction
approach and the signal subspace approach is in the trans-
form used to decompose the vector space of the noisy signal.
The theoretically optimal transform is the KLT. The spec-
tral subtraction approach uses the DFT while the signal
subspace approach was implemented using an empirical es-
timate of the KLT. Future work should focus on studying
other signal independent transforms which can well approx-
imate the KLT of the speech signal, e.g., the DCT and the
discrete wavelet transform.
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