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ABSTRACT

Recognition of the unvoiced stop sounds /k/, /p/ and
/t/ in a speech signal is an interesting problem, due
to the irregular, aperiodic, nonstationary nature of the
corresponding signals. Their spotting is much easier,
however, thanks to the characteristic silence interval
they include. Classification of these three phonemes is
therefore proposed in the present paper, based on pat-
terns extracted from their time - frequency representa-
tion. This is possible because the different articulation
points of /k/, /p/ and /t/ are reflected into distinc-
t patterns of evolution of their spectral contents with
time. These patterns can be obtained by suitable time
- frequency analysis, and then used for classification.
The Wigner distribution of the unvoiced stop signals,
appropriately smoothed and subsampled, is proposed
here as the basic classification pattern. Finally, for the
classification step, the Learning Vector Quantization
(LVQ) classifier of Kohonen is employed on a set of un-
voiced stop signals extracted from the TIMIT speech
database, with encouraging results under context- and
speaker- independent testing conditions.

1. INTRODUCTION

The quality of recognition of basic acoustic-phonetic
units is important to the success of the higher level-
s in the speech recognition task. Composite continu-
ous recognition systems such as SPHINX, [7], use fea-
tures carrying spectral information, like LPC or cep-
stral coefficients, for their baseline subsystems. Voiced
phonemes are thus successfully recognized due to their
almost periodic nature, while recognition of unvoiced
phonemes has been far more difficult up to now, [3].
Methods that exploit contextual information from the
neighboring phonemes have been resorted to, as a con-
sequence.
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In the present paper we deal with the analysis and
classification of the sounds /k/,/p/ and /t/, termed
unvoiced plosives or unvoiced stops, [9]. These sounds
include an initial silence part, corresponding to a clo-
sure of the vocal tract, during which vocal cords do not
vibrate, followed by an explosion part, corresponding
to a bursty air release from the lungs, when the vo-
cal tract suddenly opens. The different closure points,
velum, lips or teeth, produce /k/,/p/ and /t/, respec-
tively. Unvoiced stops, therefore, correspond to irreg-
ular, nonstationary signals, with a typical silence part
and a random explosion part.

The silence part allows for a relatively easy spotting
of the unvoiced stops within a speech signal. Result-
s in this direction, employing high-order statistics of
speech, are reported in [10]. The explosion part, how-
ever, is far more informative with respect to the clas-
sification of the three sounds after spotting them. The
random and nonstationary nature of this part, along
with its short duration in time (50-100 msec typically),
prompts the use of time - frequency representations for
their analysis and for feature extraction in view of clas-
sification. Previous work focuses on a specific context
in a vowel-consonant combination, and resorts to the
tail of the preceding vowel for feature extraction, so
that (time-varying) AR modeling be possible, [8]. The
time - frequency analysis employed here, on the other
hand, can expose in every detail the different evolution
of the frequency contents of the three unvoiced stop-
s with time. It is therefore expected to provide fea-
tures appropriate for discriminating among the three
phonemes.

2. THE CLASSIFICATION SCHEME

The method proposed here for classification of unvoiced
stop consonants is outlined in the block diagram of fig-
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Figure 1: Block diagram for classification

ure 1, where the first three blocks comprise the feature
extraction step, while the fourth one is the actual clas-
sification step.

2.1. Feature Extraction

As explained in the introduction, we have chosen to
focus on the burst rather than the closure part of the
stop phonemes for feature extraction. We have there-
fore employed a burst detector initial step, in order to
extract from the initial TIMIT signals z(n) a segmen-
t s(n) containing the burst part of the stop phoneme.
A simple energy detector was adequate at this point,
thanks to the clear silence part preceding the burst.
The duration of signal retained after burst was empir-
ically set equal to 50 msec.

The time-frequency representation of s(n) is com-
puted in the next step. The Wigner-Ville distribution
(WVD) has been selected, because all other Cohen
class time - frequency distributions can be obtained
from smoothed versions of it; it will therefore produce
the “sharper picture” among them. For a discrete-time
signal s(n), this is given by the two dimensional func-
tion W(n,#) as

W(n,0)=2 Y s(n+k)s*(n—k)ezp(—j2k6), (1)

k=—oc

where n is the time variable and & is the frequency
variable, lying in [0, 7], [1]. The pseudo-Wigner dis-
tribution (PWD) rather than the Wigner distribution
itself is computable in practice from a finite-length sig-
nal, as

L-1
2 Y wk)s(n+k)
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w*(—k)s (n—k)e:z:p(—]kv)» (2)

P(n,m)
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where window w(k) is 2L — 1 points long and m
0,1,...,M —1 is now the frequency point index, pro-
ducing M equispaced points in [0, #]. Either the re-
sulting two-dimensional field by itself, or a set of its
morphological characteristics, such as contours or dom-
inant peak positions, can serve as the classification pat-
tern. The former choice was made here.

The two-dimensional field P(n,m) just computed
1s next smoothed using a convolutional window along
the time axis only, and subsequently subsampled at
an appropriate rate. This step has the twofold effect
of (i) reducing the size of P(n,m) and, consequently,
of the feature vector used, and (ii) performing a time-
averaging which is desirable, since the burst part of the
signal is random while the computation of the WVD as
in equation 1 does not provide any averaging by itself.

In fact, the smoothing - subsampling step can be
performed at once using a multiresolution approach.
Indeed, in multiresolution analysis, each approximation
level produces a coarser version of its input, by low-pass
filtering it and then by subsampling the output of the
filter. This is what the decimator part produces. What
we propose here is to pass the P(n, m) two-dimensional
field repeatedly through the decimator, along the time-
axis only, i.e., successively for all frequency points m =
0,1,...M —1, as follows:

P@(n,m)=Y " h(2n—k) PU=D(k,m), (3)
k
where j = 1,...,J denotes the successive approxima-

tion levels. Initialization at j = 0 is obtained by the
raw output of equation 2, P(O(n,m) = P(n,m). The
filter {A(n)} employed can be either the low-pass analy-
sis filter of a perfect reconstruction filter bank (PRFB}),
or any low-pass filter with good cut-off behavior. Fur-
thermore, this step removes a significant portion of the
noise present in P(n, m), through the repeated low-pass
filterings it involves. The J-th level approximation,
PU)(n, m), is vectorized and fed into the classifier for
training or testing.

2.2. Classification

The fourth step in the proposed method is the actual
classification step. The LVQ classifier of Kohonen, [5],
was selected because of its property to perform success-
ful classification when the pattern space is not linearly
separable into target classes. The latter is the case in
our pattern space, as there is no evidence that the three
target classes /k/, /p/ and /t/ are linearly separable,
either in the pattern space of ours or of others, [8].
The LVQ classifier is initialized by a set of reference
vectors in the pattern space, rp,n =1,2,..., N, either



randomly or through some other clustering algorithm.
During the training phase, the set of training feature
vectors, ti,i = 1,2,...,T, is repeatedly used to update
the positions of rp’s, so that finally the boundaries they
define are close to being optimal in the Bayesian sense.
During one such repetition or epoch, each training
vector t;, i = 1,2,...,T, is assigned to the target class
of one of the current r,’s by the 1-Nearest Neighbor
(1-NN) rule. A misclassification (along with two other
conditions) triggers a position update of the reference
vectors involved (the correct one, r., and the (wrong) n-
earest neighbor, ry, ), by the following rules: r. is moved
towards t;, while ry, is moved away from t;, as

r.(i) = r(i-1)+ a(i){t; —r.(i - 1)},
rol)) = rali-1)—a(}{ti—ruG—D), ()

where step size (i) must decrese monotonically with
“time” ¢ to achieve convergence. The training proce-
dure just described corresponds to what is known as
the LVQ2 classifier, [6].

The reference vectors rp,n = 1,2,..., N, obtained
during the final epoch of the training phase, represent
the target classes. During the classification phase, they
are used to classify an incoming test feature vector v
by the 1-NN rule.

3. EXPERIMENTAL RESULTS

The unvoiced stop signals used to evaluate the pro-
posed classification scheme were obtained at random
from the TIMIT speech database, without any speak-
er/sex/context preference. They consist of 88 /k/’s, 42
/p/’s and 85 /t/’s, 215 in all. These were next passed
through the burst detector, and the first 50 msec after
burst, denoted by s(n) in figure 1, were retained for
further processing. At an 8 KHz sampling rate, this
produced 400-points-long data records. The pseudo-
Wigner-Ville distribution of each data record was then
computed at M = 16 equispaced frequency points in
[0, 7], but only half of them were retained thanks to
symmetry. The resulting 2-D fields P(n, m) were then
replaced by their level J = 7 coarser approximations.
The FIR filter A = [0.0094, -0.0707, 0.0694, 0.49, 0.49,
0.0694, -0.0707, 0.0094], which is the low-pass analysis
part of a PRFB quadruple, taken from [2], was used
for this purpose. The resulting smoothed fields, denot-
ed by PU)(n, m) in figure 1, were next vectorized and
trailing zeros were cut off, to yield finally 215 feature
vectors of dimension 50 x 1 in the feature vector pool.
In figures 2, 4 and 6 are shown three typical signals
(closure and burst) of /k/, /p/ and /t/, respectively,
while in figures 3, 5 and 7 are shown the corresponding
2-D classification patterns.

& 1 7ol | 74 Total

Test 1 || 90.0% | 87.56% | 100% | 94.0 %
(53/59) | (28/32) | (59/59) |l (140/150)

Test 2 || 93.1% | 50.0% | 100 % | 90.0 %

(27/29) | (5/10) | (26/26) || (58/65)

Table 1: Classification scores

For the classification step, this feature vector pool
was divided into (1) the training set, comprised of 59
/k/’s, 32 /p/’s and 59 /t/’s, 150 in all, chosen at ran-
dom from the pool, and (2) the test set, comprised of
all feature vectors not in the training set, which is 29
/k/’s, 10 /p/’s and 26 /t/’s, 65 in all. The LVQ2 clas-
sifier was trained using «(0) = 0.1, 2000 epochs, and
35 neurons in the competitive layer, as training param-
eters. Correct classification scores on the training set,
used as Test set #1, and on the actual test set, used
as Test set #2, are shown in table 1. It can be seen
that the results are satisfactory, as they compare favor-
ably to analogous results of previous works. The slight
only degradation in performance from Test #1 to Test
#2 shows the good generalization property of this net-
work. The poorer classification scores belong to class
/p/, which is under-represented in the feature pool,
and in the training set, consequently. This point sug-
gests that balanced instead of random selection of the
class representatives for training set would give higher
classification scores. Higher scores are also expected
if the training set is further divided into more than
three target subclasses, exploiting contextual informa-
tion. Other points that can be further tunned for high-
er classification scores are the training parameters, the
version of the LVQ classifier employed, and the algo-
rithm chosen to initialize it. Yet, the results obtained
here on a limited size experiment show the potential of
the proposed approach.

4. CONCLUSIONS

A classification scheme for unvoiced plosive consonants
is proposed in this work. It performs time-frequency
analysis of the burst part present in these phonemes
to obtain classification patterns that suit their non-
stationary and aperiodic nature. Classification with
the LVQ classifier is performed on speech segments ob-
tained from the TIMIT speech database with encour-
aging results under context- and speaker- independent
conditions. Further research is carried out on the se-
lection of the most suitable feature and on the type of
classifier employed.
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Figure 3: Smoothed WVD of /k/.
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Figure 4: Speech signal, /p/.
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Figure 6: Speech signal, /t/.

Figure 7: Smoothed WVD of /t/.



