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ABSTRACT

Radial Basis Functions (RBF) networks constitute an
interesting option to deal with nonlinear prediction of
speech because they provide a regularized solution and,
then, they can guarantee the stability of the corre-
sponding synthesis scheme; consequently, they are ade-
quate to be used in Code Excited Nonlinear Prediction
(CENP) coders.

In this paper this approach is presented, and some
simulations examples show its advantage in prediction
performance. After this, the main points to arrive
to practical implementations of CENP coders are ad-
dressed.

1. INTRODUCTION

Predictive coding of speech signals serves to get effi-
ciency in representing digitally the human voice be-
cause redundancies are removed before digitization.
The practical coders which have been developed till
now make use of linear predictors for reasons of sim-
plicity: they provide a reasonable redundancy reduc-
tion by using a reduced number of parameters which
are obtained with a moderate computational effort.

- When taking advantage of this, the price is to ac-
cept an intrinsically limited quality, due to the lack
of capability of linear models to cope with the nonlin-
ear phenomena which appear in the speech production
mechanism {1]. Thus, there is a room to explore the
application of nonlinear predictors in speech coding in
order to obtain a higher quality; obviously, these ap-
proaches will introduce more complex schemes and will
require more computational effort, as clearly perceived
when reading [2,3,4,5].

When looking for practical results, some aspects
have to be carefully considered: first at all, the uni-
versal approximation characteristic of the prediction
scheme, which is not provided by all them {2,3]; but
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RBF are universal approximators [6]. Second, the kind
of approximation is being proposed: RBF offer a reg-
ularized one [7], and this is useful to keep the num-
ber of modelling parameters relatively low (although
their quantization remains as a problem to be studied,
the parallelism of the networks opens a way for an effi-
cient quantization, and backward adaptive schemes are
also possible) (the fact of having a regularized solution
would also serve to control the error amplification in
the synthesis side by means of the regularization pa-
rameter); this important subject is not considered in
[4], and indirect solutions are suggested in other works:
[3] includes a trained codebook, reducing robustness,
and [5] allows to switch between the nonlinear predic-
tor and a linear one to cope with instability situations.
Third, developing good training algorithms is essential
to reach acceptable computational efforts.

The regularization character of RBF prediction is
discussed in Section 2; Section 3 shows, by means of
applying a correlation based model validity test [8),
that the nonlinear correlations between residuals from
a short-term linear prediction and the speech signal do
not remain when a RBF prediction is applied. Some
simulations show the improvement which RBF predic-
tion obtains with respect to linear prediction; while
other aspects, as well as some additional practical is-
sues, are addressed at the Conclusions section, along
with some suggestions to progress in solving the oper-
ational difficuities to make feasible the corresponding
class of CENP speech coders.

2. THE PROPOSED RBF PREDICTOR

The prediction problem in speech coding can be stated
as follows: let S = {(xi,zi+1) € R® x R]i= 1,---,N)
a set of data pairs to approximate by means of a func-
tion f, where each pair consist on a sample to pre-
dict z;41, and a vector of samples x; corresponding to



prevolus samples of z;;;. The problem of learning a
mapping from examples is ill-posed, in the sense that
information in the data is not sufficient to reconstruct
uniquely the mapping in the region where data are not
available; in addition, the data are usually noisy ( the
speech signal is not completely predictable}. Then,
some underlying idea of what the mapping should look
like is needed to make the problem well-posed: smooth-
ness is one of the most general and weakest constraints
that renders the approximation possible.

The regularization approach that exploits this type
of constraints leads to the RBF as a solution to the
stated problem [7]. Specifically, this network computes
the formula

M
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where {h;(-)} are the RBF, || - || is a norm in R?, {c;}
are the RBF centers, {\;} are the weights of the linear
combination, and M is the number of RBF used in the
approximation.

On the other hand, an important constraint in pre-
dictive coding is that the synthesis system must be
stable. Therefore, the nonlinear autoregressive model
based on this network

(2)

must be stable. To comply with this, the chosen RBFs
{hi(-)} have to verify [9]

g1 = f(xi) +eiqt
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It can be easily verified that Gaussian RBF
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hi(z) = exp(~ ),

(4)

o? being the variance associated to each RBF, vale it.
Consequently, the proposed nonlinear predictor is
defined by three sets of parameters; specifically:

o { 62 }: variances of the RBF;
e { c; }: centers of the RBF; and

o { A }: weights of the linear combination;

with ¢ = 1,..., M. Then, the total number of parame-
ters of a model with M RBFs is (p+2)M.

As previously said, training is an inportant practical
aspect; here, to combine a moderate amount of calcula-
tions with a reasonable performance, a first solution is
obtained by the Moody and Darken method [10], and
it is refined using a standard gradient algorithm.
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3. MODEL VALIDATION

In the case of nonlinear systems, like speech produc-
tion, it is well known that the traditional validation test
for linear models, which consist on computing the au-
tocorrelation of the residual and the cross-correlation
between the input signal and the residual, is useless.
Billings and Voon proposed in [8] a high order corre-
lation based validity test for nonlinear models: a non-
linear model, estimated using suboptimal least-squares
procedures will be unbiased if:

r2re2(m) =0, Vm
$z2re(m) =0, Vm
Gze(m) =0, Vm

where, in our case, z is the original speech, e is the pre-

diction residual, ¢ is the biased estimate of the cross-
lation functi dz?d 22?2

correiation function, and enotes z - .

(5)
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Figure 1: Model validation: ¢ee(m), ¢ze(m), ¢p2e2(m)
and ¢,2.(m). (a) Nonlinear predictor; (b) Linear pre-
dictor.

This test has been employed to validate the two
models (short-term predictors) which are being com-



pared, 1.e., the RBF one and the linear one, with the
same number of coefficients. The RBF model has 4
Gaussian RBF and the dimension of the input vector
i1s p = 10; hence it is characterized by 48 parameters.
In this paper we test the RBF predictor in the scope
of the standard 16 kbps CELP-LD, which employs a
linear one of 50 coeffients. The results, obtained by
averaging cross-correlations over a sentence of a male
speaker, are shown in Figure 1: the straight lines de-
limit the 95 % confidence intervals, which indicate if the
correlation is significant or not. Inspection of part (b)
of Figure 1, corresponding to the linear model, clearly
shows that ¢_2:,2(m) is outside the confidence bands,
indicating that there are unmodeled nonlinear correla-
tions. Part (a) of Figure 1 shows, however, that these
correlations have been correctly modeled by the pro-
posed RBF scheme.

4. SIMULATIONS

As a consequence of the above facts, the use of this
kind of predictor must offer better results than linear
schemes. The following simulations support this idea.
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Figure 2: Residuals from a voiced speech frame: (a)
RBF prediction; (b) Linear prediction.

Prediction Gain frame type
voiced | transition | unvoiced
Nonlinear (dB) 15.1 13.2 7.1
Linear (dB) 13.6 11.3 5.9

Table I: Prediction gains

First, we compare the proposed short-term nonlin-
ear predictor with a linear one with the same number
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of coefficients. The network which is used is a RBF
model with 4 RBF and centers of dimension p = 10.
The residuals and prediction gains obtained in both
cases for one frame (30 msec.) of voiced speech (corre-
sponding to a male speaker) are shown in Figure 2 as
an illustrative example.

The averaged results over 4 sentences from 4 speak-
ers are presented in Table I. We have distinguished
among voiced, unvoiced and transition (from voiced to
unvoiced and viceversa) frames. As it can be seen,
the proposed model is found to perform significantly
better, in particular over voiced and transition frames,
than the linear procedure with the same number of pa-
rameters.
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Figure 3: Original speech (solid line) and reconstructed
speech (dashed line): (a) RBF predictor; (b) Linear
predictor

These results suggest the possibility of applying our
nonlinear predictor to the CCITT 16 kb/s speech cod-
ing standard [11}: this coder is a CELP-LD which does
not use long-term predictor due to the pitch predictor
adaptation sensitivity to channels errors and, to com-
pensate for the loss in speech quality, the short-term
predictor order is increased from 10 to 50. Figure 3
shows a preliminary comparison of the reconstruction
performance of a CELP coder (without pitch predictor)
using our predictor, with the same coder using a linear
predictor with 48 coefficients (in both cases, the predic-
tor has not been quantized, a 128 excitation codebook
has been used, and the adaptation has been performed
in a forward way). The results for the nonlinear and
the linear schemes are presented in parts (a) and (b) of
this Figure, respectively: the solid lines correspond to
the original speech, and the dashed lines correspond to
the nonlinear and linear reconstructed versions. These
results clearly show that the reconstructed speech using



the proposed approach provides a better approximation
to the actual speech signal than the linear procedure.

These results encourage the design and test of
CELP-LD schemes based on this kind of predictors:
additional practical aspects are discussed in the follow-
ing Section.

5. CONCLUSIONS AND FURTHER WORK

After discussing the theoretical possibilities which
Gaussian RBF have to perform an efficient prediction
of speech signals, these advantages have been verified
by means of validiting the modelling advantage with
respect to linear prediction and simulating the work of
two coders, one with a linear and the other using an
RBF predictor.

It exits the alternative of compensating the disad-
vantage of linear prediction with a better excitation if
enough bits are available: however, it seems reason-
able to dedicate excitation to model only the strictly
unpredictable part of the signal.

Some practical issues have to be addressed before
proposing practical CENP schemes:

o First at all, the error amplification phenomenon
which appears when synthesizing speech using
quantized excitation need to be carefully solved:
the use of RBF models allows to establish a
compromise between closeness to the data and
smoothness of the solution by selecting the value
of the regularization parameter, ensuring in this
way a reasonable balance between a high predic-
tion capability and the need of having small er-
rors in the synthesized signal when small errors
appear in the excitation.

Second, when following the above line, the loss in
prediction gain, which is equivalent to an increase
in residual correlation, can be partially compen-
sated by adding a linear predictor (an thus, in
turn, will probably allow a reduction in the RBF
model size). This will open a way to getting prac-
tical combined predictors under reasonable guide-
lines to establish their sizes; and, consequently, to
develop other kinds of CENP coders.

Third: in any case, increasing the efficiency of
training algorithms is needed to make useful this
kind of coding schemes.

All these aspects, as well as other appearing in de-
signing CENP coders such as designing the excitation
and selecting the gain for the analysis-by-synthesis pro-
cedure, are currently under investigation.
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