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ABSTRACT

We present a new method for interpolating between LPC
spectra via pole-shifting. This approach solves the prob-
lem of real-to-complex and complex-to-real pole transi-
tions by converting to a domain where each pole has a
complex conjugate. Desired pole shifts are calculated in
the new domain after applying a perceptually-based pole
pairing algorithm. Intermediate spectra corresponding to
these pole transitions are then optimally approximated us-
ing the original number of poles. The resulting interpo-
lated spectral sequence is characterized by approximately
linear changes in formant frequencies and bandwidths, and
is free of the artifacts that may occur with other LPC
spectral parameter interpolation methods.

1. INTRODUCTION

Interpolation of linear predictive coded (LPC) spectra is
applied in a variety of speech processing tasks, including
speech coding and text-to-speech synthesis. When LPC or
cepstral coefficients are interpolated for this purpose there
is no guarantee of stability for the filters represented by the
intermediate coefficient values. Even when a parameter set
used for interpolation guarantees stability there may still be
a problem with the naturalness of the spectral sequence
(.e. non-speech-like spectral transitions) as the starting
spectrum is incrementally transformed to the desired end-
ing spectrum. Unnatural spectral transitions include the
sudden appearance and disappearance of narrowband
peaks, peaks fading and appearing at closely spaced fre-
quencies (instead of simply shifting from one frequency to
the other), and peak frequency shifts that are highly nonlin-
ear. To avoid these problems during LPC spectral interpo-
lation, we chose to directly manipulate the LPC poles.
Shifting poles in the z-plane provides great control over
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spectral transitions since each pole additively contributes a
peak to the log spectrum. In developing a pole shifting
method, the following problems were addressed: (1) pair-
ing poles in the starting spectrum with poles in the ending
spectrum in a perceptually-meaningful way, (2) defining
the desired path for each pole to follow during the interpo-
lation process, and (3) handling the cases of complex-to-
real and real-to-complex pole transitions.

2. POLE SHIFTING SCHEME

We have based our algorithm on the assumption that
changes in formant frequencies and bandwidths from frame
to frame during the interpolation should be finear. Cer-
tainly this is true in actual speech over only a short time
span, but without additional contextual information this is
probably the best assumption that may be made. Given the
LPC filter model
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where G is a gain constant, oy {k =1...,N } are the LPC
coefficients modeling the effects of vocal tract filtering,
and p j { j=1L..,N } are the corresponding poles of
H(z), we may define the frequency and bandwidth of each
pole p;:
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with Ty representing the sampling period. These values are
those that match the center frequency and bandwidth of the
frequency response resulting from a single pole inside the



unit circle on the z-plane. To achieve linear changes in F
and BW versus some blending parameter &, define the
i - th pole’s frequency and bandwidth tracks as follows (@
varies from 0 to 1):

E(a)=(1-a)Fy+aF),
BW;(a) = (l—a)BW;0+aBVI§]

It is clear that the frequency of p; linearly changes from
Fo to K, and that the bandwidth of p; linearly changes
from BWy to BW,; as a function of @. Henceforth we
drop the subscript specifying pole index and refer to an
arbitrary pole p; as p. It may be shown that linear changes
in F and BW versus 4 occur when:

P(a)=Po(pﬂ0J .

As before, the subscript O refers to the starting value
(a=0) and 1 to the ending value (a = 1) of each parame-
ter during interpolation. The pole interpolation paths de-
fined by the equation above appear spiral-like in shape.

3. POLE PAIRING PROCEDURE

In order to apply this pole shifting scheme, we found it
necessary to establish a pole pairing procedure that relates
to both the pole transition paths and some perceptually-
meaningful criteria. Based on the distance measure pre-
sented in this section, the selected pole pairings are those
that result in the minimum cumulative distance between
poles. In calculating distances all possible pole pairings
must be considered. For N poles this requires that N!
pole combinations be evaluated. The problem of a more
efficient sub-optimal pole pairing algorithm is left for fu-
ture work. Based on the derived pole path function p(a),
the length of the path taken from p, to p; is
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which serves as the basis for our distance measure. Using
a weighting factor proportional to the perceptual effect of
pla), the distance between the starting and ending pole

locations is defined as a weighted calculation of path
length:
1
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This weighting function was derived based on the power
spectrum of a single-pole filter. Because it is possible that
a half-power point (-3 dB from the peak) does not exist in
this response, we instead define @ m;jq as the frequency at
which the power level is halfway between its minimum and
maximum values: »

’H(ejwmid)'z = %(IH(ejw)’;n+|H(ejw)liu)

For a pole with magnitude 7 and angle 8 =0 this fre-
quency is found to be:
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Because there is a direct relationship between our per-
ceived loudness of a sound and the logarithm of its power
level, we are interested in the effect of changes in pole ra-
dius and angle on the log spectrum. In this case a conven-
ient way to measure these effects is to calculate the partial
derivative of the log spectrum with respect to both @ and
r, at w=wmig. The calculation results in measures that
are equal:
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Thus small shifts of the pole at Z =r in either radial or an-
gular directions have the same perceptual effect at our ref-
erence frequency wy;y. We conclude that the weighting
function need not discriminate between radial and angular
pole movements when applying perceptually-meaningful
weighting. Our choice for this weighting function is:

W(p(a)) =Wl(a) =2r(a) [1—r(a)2]—1



We take this expression from the sensitivity measures cal-
culated previously; note that the expression assigns infinite
weight to poles on the unit circle, and zero weight to poles
at the origin. Substituting the weighting function into the
distance measure expression yields:
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Solving this integral gives us the following:

(1- 2]

Inl =0
J2! Ll“ﬁzJ
(po p1)=ln—- ¢ when ry #n;
Po in h
| o/
r2

when r=ry=n.
1-r?

2

4. COMPLEX-CONJUGATE TO REAL POLE
MAPPING

A problem inherent to z-plane pole shifting (and previously
discussed in [1}) is that of interpolating between real and
complex-conjugate pole pairs. Since every LPC coefficient
aj, must be real-valued, the roots of the denominator
polynomial A(z) must always be real or come in complex-
conjugate pairs. Inevitably a set of complex-conjugate
poles will be paired with two real poles at different loca-
tions in the z-plane, forcing a violation of the complex-
conjugate relationship along the interpolation pathway.
Our solution to this problem considers the transfer function
H?2(z,a), where each pole (whose position is a function of
Q) retains a complex conjugate partner over its entire in-
terpolation path. To ensure that complex conjugate pole-
pairs map to other complex conjugate pole-pairs, the actual
pairing is done using “half-plane” transfer functions of the
form:

B(z,0) = — ,
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where ﬁi(a) =Re{pi a) +j|Im pi(a)}|.

Once the N poles of ﬁ(z,O) are paired with the N poles
of ﬁ(z,l) , the desired pole mapping between the 2N poles

of Hz(z,O) and the 2N poles of Hz(z,l) is:

50 5 50, B0 >p (), i=1..N

If the desired end-result of the interpolation procedure is a
sequence of magnitude spectra, they are simply found as
H(z,a) =VH?2 (z,a). It is more difficult to arrive at the
values of N poles p;(a), i=1,...,N, whose magnitude
response best approximates this desired H(z,a). For this
we applied the autocorrelation method of calculating LPC
coefficients using the Levinson-Durbin recursion, where
the autocorrelation function along every step of the inter-
polation path is found by calculating the inverse FFT of:
H2(eJ27kIMYy k=0, M-1.

5. RESULTS

Figs. 1 and 2(a) illustrate interpolation of LPC spectra via
the methods presented. The pole mapping and shifting
procedures for transfer functions A 2 (z,a) and the optimal
approximation to VH?2 (z,a) are plotted in Figs. 1(a) &
(b), with the sequence of magnitude spectra resulting from
(b) plotted in Fig. 2(a). As a comparison to our methods,
the sequence of magnitude spectra resulting from cepstral
coefficient interpolation is plotted in Fig. 2(b). While the
sequence in Fig 2(b) exhibits unnatural spectral transitions,
the sequence in Fig. 2(a) is characterized by approximately
linear changes in peak frequencies and bandwidths.
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Figure 1: Pole Mapping/Shifting Scheme
0 or
)
\
20 -20E /3R
\ A
WA <
/‘\: A
3 / g i
E .so f /v‘:
E / ‘; 3 7
y X 5 ,
= 80 * 80 \
-100 -100f
120} 120}
0 7000 2000 3000 2000 5000 0 1000 2000 3000 2000
Frequency in Hz Frequency in Hz

(a) Spectral sequence from pole interpolation

(b) Spectral sequence from cepstral coefficient interpolation

Figure 2: LPC Spectra
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