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ABSTRACT

In literature, the quantization properues of several representations
of the LPC model have been studied. Until recently, best results
have generally been obtained with the LSP frequencies. In scalar
quantization schemes, the Immitance Spectrum Pairs (ISP's) [1]
perform even slightly better. The good quantization performance
of LSP and ISP can be attributed to their theoratical statistical
properties: they are uncorrelated when estimated from stationary
autoregressive processes, in contrast to the other representations.
For small variations in the coefficients of any representation, the
Spectral Distortion can be expressed as a weighted squared
distortion measure. The optimal weighting matrix is the inverse
of the covariance matrix of the coefficients. For LSP and ISP this
matrix is a diagonal matrix and hence the best weighting factors
are the inverses of the theoretical variances. The difference
between LSP and ISP is due to their distributions in speech.

L INTRODUCTION

Accurate quantization of the LPC model is of prime importance
for the quality of low bitrate speech coders. The objective of
spectral quantization is to achieve transparent quality, i.e. speech
coded with quantization of the LPC model and speech coded
without spectral quantization are indistinguishable in terms of
subjective quality. For a comparison of quantization methods, an
objective measure of quality is needed. This measure has to be
relevant for speech. Paliwal and Atal [2] showed that transparent
quantization is achieved if the average of the well-known Spectral
Distortion measure is about 1 dB with not too many outliers. For
quantization of the spectral model different representations can be
used, such as the Reflection Coefficients (RC's), Log Area Ratios
(LAR's), Arcsine of Reflection Coefficients (ASRC's) and Line
Spectrum Pair frequencies (LSP frequencies) [3]-[5]. Stability is
easily guaranteed with these representations. Scalar quantization
(SQ) schemes need approximately 35-40 bits per frame for
transparent quantization and vector quantization (VQ) schemes
about 25-30 bits per frame. The large VQ codebook size
associated with these numbers of bits urges the necessity of fast
search measures and complexity reducing codebook structures,
such as split VQ (SVQ) and multi-stage VQ.

An ideal search measure has three characteristics. Firstly, it can
be computed very fast. Secondly, it ensures that the vector of
minimum distance is chosen, even from constrained codebooks.
Thirdly, it is a good approximation of Spectral Distortion.

A weighted Euclidean distance measure (WEDM) is a search
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measure that fulfils the first and second demand for SVQ.
Whether it fulfils the third demand, depends on which
representation and weighting factors are used.

In section Il an approximation is derived for the multi-parameter
spectral sensitivity of the Spectral Distortion in terms of the
theoretical covariance matrix of the coefficients of any
representation. This expression shows that the optimal weighting
matrix in a weighted squared distance measure is the inverse of
the theoretical covariance matrix of the coefficients of any
representation. Hence, a WEDM is an approximation of Spectral
Distortion if the theoretical covariance matrix is a diagonal
matrix, i.e. the coefficients are uncorrelated.

Best quantization results are generally obtained with the LSP
frequencies, both for SQ (Soong and Juang [6]) and SVQ
(Paliwal and Atal [2]). An interesting new representation for
quantization is formed by the Immitance Spectrum Pairs (ISP's)
[1]. In SQ schemes, ISP performs even slightly better than LSP.
In section [I we will show that the good quantization
performance of LSP and ISP can be attributed to the theoretical
statistical properties of these representations; they both have
uncorrelated coefficients.

In section IV the performance of the theoretically derived
weighting factors is compared to different weighting factors used
in literature.

The improvement of ISP over LSP can be attributed to their
distributions in speech, which ‘is the subject of section V.
Conclusions follow in section VI.

IL MULTI-PARAMETER SPECTRAL SENSITIVITIES

An approximation will be derived of the Spectral Distortion due
to small disturbances in all coefficients of an arbitrary
representation.

The Spectral Distortion (SD) measure between two autoregressive
models is defined as:
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A and A are polynomials 1n z, with LPC parameters as
coefficients. A first order approximation to the multi-parameter
spectral sensitivity of SD with respect to all parameters is:
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AA is the difference between the original polynomial and the
disturbed polynomial. Eq.(2) can be written in the time domain
as:

SD? » 2 Aa"RyAa 3
where Ax is the vector of differences between LPC parameters
of the disturbed and original model and R, is the (pxp)
covariance matrix of the autoregressive process described by the
polynomial A, normalized with respect to the innovation variance
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The theoretical asymptotical covariance matrix C,, of estimated
LPC parameters follows from Maximum Likelihood theory and

is given by 1 .
C, == R,
« =g R

where N is the number of observations used to estimate the
parameters. The theoretical covariance matrix C, of any other
representation of the LPC model can be found from the
covariance matrix of the LPC parameters and from the matrix of
partial derivatives A of the representation with respect to the LPC
parameters:
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The (i,j)-th element of A is the partial derivative of the i-th
coefficient A, with respect to the j-th LPC parameter.
For any representation A, the inverse of the "A to LPC derivative
matrix" A is the "LPC to A derivative matrix" B, because the
LPC parameters and the A-coefficients are one-to-one related.
Hence, the inverse of the covariance matrix of the other
representation can be written as:

¢, ' =NB'R, B ©®
For small disturbances Ak, in the coefficients A,, Ace in eq.(3)
is approximately equal to B A\, where B is the matrix of partial
derivatives of the LPC parameters with respect to the A-
coefficients. Together with eq.(6) it follows from eq.(3) that

SD? ~ %AXT c;'an ™
This formula shows that the Spectral Distortion due to small
disturbances in the coefficients of any representation can be
approximated by a weighted squared distance measure in the
coefficients of that particular representation, the weighting matrix
being a constant times the inverse of the theoretical covariance
matrix of the coefficients. It can be interpreted as a relation
between the deterministic properties of LPC representations and
their statistical properties. For example, coefficients with a high
spectral sensitivity have a small variance. Further, strong
cocefficient couplings cause large correlations between the
estimated coefficients. The single parameter spectral sensitivitics
are the diagonal elements of C}"I.
In SVQ, the vector is split into two or more parts and these parts
are quantized independently using VQ [2]. A WEDM is a
separable measure, hence a minimum for each part of the vectors
gives a minimum for the total vector. Eq.(7) reduces to a WEDM
with the inverses of the variances as weights, if the coefficients
of the representation are uncorrelated when estimated from
stationary autoregressive processes. In the next section we will
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show that the LSP frequencies and the ISP's satisfy this property.
IIL STATISTICAL PROPERTIES OF LSP AND ISP

The statistical properties of representations of the LPC model are
important for quantization. The theoretical statistics of most
representations are known. For example, Kay and Makhoul [7]
have investigated them for RC. The statistical properties of LAR
and ASRC can be ecasily derived from those of reflection
coefficients. So far, not much is known about the statistical
properties of LSP frequencies. In this section we will show that
LSP frequencies and ISP coefficients are uncorrelated when
estimated from stationary autoregressive processes.
Autoregressive estimation leads to a p-th order model with
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The polynomial for the order p+1 follows from the polynomial of
order p and the (p+1)-th reflection coefficient Kp+y With the
Levinson recursion:

Ap+l(z) = Ap(z) K 2= *')Ap(z") ¢)]
The odd and even LSP polynomials P(z) and Q(z) are formed by
setting the (p+1)-th reflection coefficient to -1 or +1 respectively
in eq. (9) and can be written as:

p/2
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These expressions are given here for even order LPC models. We
only consider this case here for ease of notation, without loss of
generality. The LSP coefficients y;, are related to the LSP
frequencies o, as y;=-cos(,).

By expanding the polynomials P(z) and Q(z) and comparing the
coefficients of the powers of z with those of eq.(9) for Kol
equal to -1 and +1 respectively, a set of equations is obtained
connecting the LSP frequencies o, to the LPC parameters o,
From these relations it can be readily seen that the LSP
frequencies are functions of parameters B, which themselves are
differences and sums of the LPC parameters:
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The odd LSP frequencies are functions of the differences of LPC
parameters and the even LSP frequencies of the sums of LPC

parameters only. Therefore, the following symmetry relations hold
for the elements of the LPC to LSP derivative matrix:
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The covariance matrix R, of an autoregressive process has a



persymmetric  Toeplitz strucwre, so R(i,j)=R(,i)=R(p+1-
1,j)=R(p+1-j,i). Using this Toeplitz structure and the symmetry
relations of eq.(12) it follows from eq.(6) that the even and odd
LSP frequencies are mutually uncorrelated.

Analytical computation of the inverse of the covariance matrix of
the LSP frequencies for process orders up to p=6 with eq.(6)
showed that all LSP frequencies are uncorrelated for these orders,
ie. C, is a diagonal matrix. For higher orders, analytical
computation of the covariance matrix is rather straightforward but
very tedious. However, numerical computation of the covariance
matrix of LSP frequencies showed that LSP frequencies are also
uncorrelated for higher order processes. For a given process, the
elements of the LPC to LSP derivative matrix B can be found
numerically. Next, the inverse of the covariance matrix of the
LSP frequencies can be computed with eq.(6). This procedure has
been followed for many different process orders and process
parameters. For every process considered, the LSP frequencies
turned out to be uncorrelated.

The Immitance Spectrum Pairs (ISP's) are a new representation
for quantization (Peller and Bistritz [1]). They consist of p-1
frequency parameters and (a transformation of) the last reflection
coefficient of the model. They were shown to perform slightly
better than LSP frequencies in SQ. Chan [8] has shown that the
set of ISP's are actually the LSP's of the model of one order
lower plus the last reflection coefficient. However, the theoretical
variances and covariances of the ISP frequency parameters are
not equal to those of the LSP frequencies of a process of one
order lower, because the covariance matrix of the parameters of
that lower order model depends on the last reflection coefficient.
In the case of LSP frequencies, no higher order reflection
coefficients exist.

We investigated the statistical properties of ISP's and found that
they are uncorrelated, just like the LSP frequencies. We used
symmetry relations to show theoretically that odd and even ISP
frequency parameters are mutually uncorrelated. Numerical
differentiation showed that all ISP frequency parameters are
uncorrelated.

Because the LSP's and ISP's are uncorrelated, the Taylor
approximation of SD in €q.(7) reduces for these representations
to a WEDM. The weighting factors in this measure are the

inverses of the theoretical variances v, of the coefficients:
2
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The variances can be found from eq.(6), either analytically or
numerically. The variances are smallest for LSP frequencies
corresponding to a formant. The smaller the bandwidth, the
smaller the variances. Use of a WEDM with the inverses of the
variances as weighting factors results in accurate quantization of
formants.

The localized spectral sensitivity of the LSP frequencies has
always been used as a heuristic justification for the use of a
WEDM. However, such a measure can also be used for the ISP's,
although the spectral sensitivity of the last ISP coefficient, which
is a transformation of the last reflection coefficient of the model,
is certainly not localized. The true justification for the use of a
WEDM is that the theoretical covariance matrices of LSP's and
ISP's are diagonal.
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IV. COMPARISON OF WEIGHTING FACTORS

In this section we will compare the weighting factors following
from eq.(7) with some others used in literature.
The weighting matrix in eq.(7) is a diagonal matrix for the LSP's
and ISP's. For VQ this is very useful because one can now use a
fast search measure that is a linearized approximation of the
Spectral Distortion. For the reflection coefficient based
representations, the weighting matrix is not a diagonal matrix.
The off-diagonal elements can be very important because the
correlations between the coefficients can be large for these
representations (Erkelens and Broersen [9]). Therefore, a WEDM
on the RC based representations doesn't approximate the Spectral
Distortion as accurately as q.(7). To illustrate this, an experiment
was performed to compare seven different distortion measures.

From a segment of speech data, an LPC mode! has been
estimated. The LPC power spectrum and the LSP frequencies of
this model are shown in Figure 1. With this model as reference,
a simulation study has been made, by adding to the Log Area
Ratios of the original model a vector of Gaussian numbers, scaled
in such a way that the Spectral Distortion was 1dB with respect
to the original model. We computed the seven different distortion
measures 25000 times between the distorted model and the
original model. A perfect measure would always give exactly the
same result. Not all measures had the same average value. For a
comparison, they were properly scaled. Now, the distance
measure with lowest variance for all vectors generated from the
model, is the best approximation of the Spectral Distortion. The
measures we compared are:

(a) / (b) / (c) the approximation of the Spectral Distortion
of eq.(7) for LSP, ISP and LAR,

(d) a WEDM for LAR, using as weighting factors the
single parameter spectral sensitivities, i.e. only the diagonal
elements of CLAR'I, ‘
(e)/{£)/ (g8) WEDM for LSP using the heuristic weights in
[2], [10] and {11}

The standard deviations of the measures were:

(@) 0.02 (b) 0.03 (c) 0.04 (d) 0.26 (e) 0.15 (f) 0.08 @007

respectively. The WEDM for LAR has worst performance,
because the off-diagonal elements of CLAR" are neglected.
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Figure 1. Power Spectrum and LSP frequencies of an LPC
model for a voiced sound.



Models from other speech data give different values for the
standard deviations. However, several different examples were
considered and in all examples the measures based on eq.(7) were
the best approximation of the Spectral Distortion.

The theoretical properties of the RC based representations are not
suitable for SVQ. ISP and LSP have optimal theoretical
properties for SVQ. The difference in performance between ISP
and LSP is due to their distributions in practice.

V. EXPERIMENTAL DISTRIBUTIONS
OF LSP AND ISP

The superiority of weighting based on ¢q.(7) over other weighting
factors has been verified experimentally in the last section.
Single stage VQ is able to take fully into account all
dependencies between coefficients of a representation. SQ and
SVQ are suboptimal due to the constrained location of the vectors
and can have reduced performance if the search measure does not
ensure that the vector of smallest distance is selected. For LSP
and ISP a WEDM can be used, so here the decrease in quality of
8Q and SVQ as compared with that of single stage VQ is due to
the constraints posed on the locations of the codebook vectors.
Therefore it must be that the experimental distributions of ISP
coefficients in speech are more suitable for SVQ than the
distributions of the LSP frequencies. This was first noted by Chan
[8]. He showed that the set of ISP's are actually the LSP
frequencies of a model of one order lower plus a transformation
of the last reflection coefficient. This explains why ISP's perform
better in SQ than LSP frequencies. Every LSP frequency needs
approximately 4 bits. The last reflection coefficient of a model is
generally small and needs only about 2 bits. This accounts for the
gain in performance of ISP's over LSP frequencies. Chan used
this to propose a mixed LSP/RC representation for quantization,
which resulted in slightly increased performance over 'pure’ LSP
and RC, both in SQ and SVQ. The LSP frequencies computed
from the first p-k, k>1 reflection coefficients of model are not
uncorrelated. An experimental advantage of a mixed LSP/RC
representation over LSP exists because the last reflection
coefficients are generally small and need fewer bits than LSP
frequencies, but a  theoretical disadvantage exists because
correlations are neglected.

The quality loss due to the constrained codebook structure is less
for ISP than it is for LSP. Other representations may have
experimental distributions more suitable for SQ and SVQ, but are
not suitable for use with a WEDM.

We think that for SVQ only representations should be used,
which have optimal theoretical properties for this constrained
codebook structure, i.e. are uncorrelated. More representations
satisfy this property. For example, the Karhunen-Loeve transform
does, but stability may become a problem. An experimental
evaluation is necessary to choose between uncorrelated
representations, because the amount of quality loss in constrained
VQ is influenced by the experimental distributions of
representations.

VL CONCLUSIONS

A weighted squared distortion measure is a Taylor approximation
of the Spectral Distortion. The optimal weighting matrix in this
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measure is the inverse of the theoretical covanance matnx of the
coefficients.

LSP frequencies and ISP's have optimal theoretical statistical
properties for SQ and SVQ, because they are uncorrelated. For
uncorrelated representations a weighted Euclidean distance
measure with the inverses of the variances as weights is an
approximation of Spectral Distortion.

The theoretical statistical properties are not the only important
factors for SQ and SVQ. Also of great importance are the
experimental distributions, i.e. the dependencies and variations of
the coefficients in speech. Because of its experimental properties,
ISP is a better representation for SQ and SVQ than LSP.
Representations with optimal theoretical properties do not
necessarily give the same performance. because the amount of
quality loss in SVQ depends on the distributions of a
representation in speech. It has to be found out experimentally
which of these representations is the best, because the
distributions in speech are not fully known.
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