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ABSTRACT

We describe a new approach to decomposing signals that are
modeled as a sum of jointly amplitude and frequency mod-
ulated cosines with slowing-varying center frequencies ob-
served in noise based on statistical nonlinear filtering ideas.
We demonstrate the ideas on a formant tracking problem
for the sentence “Where were you while we were away.”

1. INTRODUCTION

There has been extensive recent interest in taking a signal
y(t) and extracting amplitude a(t) and phase #(t) mod-
ulations, i.e., y(t) = a(t)cos(4(t)), using Teager’s energy
operator {2, 3, 5, 6, 7, 8, 9]. Both the case of a linear super-
position of terms [7], i.e., y(t) = 3. a:(t) cos(4:i(t)), and a
single term observed in the presence of noise [2] have been
investigated. In both cases, the signal is first passed through
a bank of filters and then the energy operator is applied to
the output of each filter. In the case of a superposition of
terms, the bandwidth of the ¢ th filter is determined by the
bandwidth of the term a;(t)cos(¢:i(t)) and the outputs of
the 7 th energy operator are a;(t) and ¢:(t). Therefore, each
filter is responsible for a particular term. In the case of a
single term in the presence of noise, the bandwidths of the
filters are determined by the trade-off between suppressing
the noise and passing as much signal energy as possible and
the single signal is tracked (by an energy measure) as it
-moves from filter to filter.

In our approach, which we call the Model- Based Demod-
ulation Algorithm (MBDA), we simultaneously consider a
linear superposition of terms and the presence of noise. We
describe the signal in terms of statistical models for a;, ¢,
and the noise and apply nonlinear filtering techniques to
estimate @; and ¢; from the noisy signal. In a qualitative
sense, the nonlinear filter acts as a bank of bandpass filters
where the center frequency of the 1 th filter tracks the in-
stantaneous frequency of the a;(t)cos(¢i(t)) term and the
bandwidth of the ¢ th filter is set to achieve the optimal
trade-off between passing signal energy and rejecting noise
based on the statistical model. In this point of view, the pa-
rameters of the energy operator approach, specifically the
bandwidth and center frequencies of the Gabor filters, are
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seen to qualitatively correspond to the parameters in the
statistical model of MBDA.

2. MODEL

For each formant (i labels the formant), there is a dynamical
system which describes the time evolution of 4 signals: the
Kaiser-Teager amplitude signal (a:(k)), the Kaiser-Teager
frequency signal (v:(k)), the formant frequency (f:(k)), and
the total phase signal (4:(k)). We have chosen simple dy-
namics: The Kaiser-Teager amplitude and frequency signals
a; and v; are modeled as first-order autoregressive (AR)
processes which allows independent control of the power
and the bandwidth. The formant frequency f; is modeled
as a random walk. This choice was made because we ex-
pect the formant frequency to remain constant over periods
of milliseconds in duration and a random walk is the only
Gauss-Markov model in which such behavior has a large
probability of occurring. Mathematically, this is reflected
in the fact that if (k) is a random walk then E[z(k)]is con-
stant and (k) = arg max,x41) p(2(k + 1)|z(k)). The dy-
namics of the total phase signal ¢(k) are completely deter-
mined by its definition: ¢:(k) = ¢;(0) + 2xT Ek_l (i) +

vi(1)) where T is the sampling interval. The melagoured sig-
nal, denoted by y(k), is the linear superposition of the con-
tribution from each formant, specifically, ai(k)cos(:i(k)),
plus additive measurement noise. The complete model is

therefore

ai(k +1) oa;ai(k) + o, Wa, (k) (1)
vilk+1) = onvi(k) + g ws, (k) (2)
fik+1) = fi(k) +g5,wy, (k) (3)
$:(k+1) = o¢i(k)+ 2xTfi(k) + 2xTwi(k) (4)

y(k) = ) ai(k)cos(gi(k)) + ru(k)  (5)

3

where the process noises wa;, wy,, and wy, and the observa-
tion noise v are all iid N (0, 1) sequences; the initial condi-
tions are a:(0) ~ N (0,43 /(1 —a2))), v:(0) ~ N0, ¢, /(1 -
az,‘))x fi(O) ~ N(mf-',o)p?f,,o)’ and ¢f(0) ~ N(O’p?ﬁ,-,o); and
the process noises, observation noise, and initial conditions
are all independent. Notice that the initial conditions re-
quire that Jas,] < 1 and |@,,| < 1 (since otherwise the
stated variances are negative) in which case a; and v; are
wide sense stationary random sequences. For later conve-
nience, define 6 = (aa;, qa;, Aw;, qu;y Gty Ty Ms;0, Pfi0s



Pe;0). We estimate the parameter vector § by matching
the second order statistics of the model to training data.

3. NONLINEAR FILTERS

The goal of the nonlinear filtering problem is to estimate
ai(+), vi(-), fi(-), and ¢:(-) from the measurements y(-} and
knowledge of the statistical model described above. If a;(k)
was constant then Egs. 1-5 describe a frequency modu-
lated communication system, the Extended Kalman Filter
(EKF) [1, Section 8.2] is essentially a phase-locked loop
(PLL), and the PLL is an excellent estimator. Therefore, we
compute estimates of a;(k), »;(k), fi(k), and ¢:(k) based on
the measurements y(0), ..., y(k) by using the EKF for this
more complicated model. The EKF operates by linearizing
the nonlinear model around the current best estimate and
then applying the Kalman Filter (KF) to the resulting linear
time-varying model. The computational requirements are
minimal: the state equation is already linear, the one-step
state transition matrix (denoted by F') is block diagonal (1
block per formant) and each block is sparse so multiplica-
tion by F' is inexpensive, and the observation is a scalar so
the one matrix inversion is actually division by a scalar. It
is necessary, however, to compute trigonometric functions
at each time step in order to linearize the observation equa-
tion.

The result of the EKF are estimates of a;(k), vi(k),
fi(k), and ¢i(k), which are denoted a:(k), #:(k), fi(k), and
¢;,'(k) respectively. From these estimates we can compute
a reconstructed speech signal, denoted by §(%), by §(k) =

3= (k) cos(: (k)
4. SYNTHETIC EXAMPLE

In this example, patterned after [8, Fig. 3], we consider a
chirp signal:

y(k) = cos(2x fakT) cos(27(frm + JkT)kT)

where T' = 1/16000 s, fo = 30 Hz, fn = 500 Hz f. =
2000 Hz/s, and k is in the range from 1 to 1600 (i.e.,
100 ms). Therefore, the instantaneous frequency in the sig-
nal is fim +2f.kT while the instantaneous frequency in our
model Eqgs. 1-5 is f(k) + v(k). The results, shown in Fig-
ures 1 and 2, are excellent: after an initial transient, the fil-
ter accurately tracks the increasing formant frequency f(k),
the zero Kaiser-Teager frequency v(k), and the oscillating
amplitude a(k). (The EKF used one formant with a, = .99,
Ga=.1,00.=.99, o =.1,¢9r =83, 7= +/1/12, mfo = fm,
Pfo = 0, and Po0 = 0)

5. FORMANT TRACKING EXAMPLE

The model (Egs. 1-5) and EKF can be applied to many
different problems in speech processing. In this section
we emphasize the formant signal f rather than the Kaiser-
Teager frequency signal v or amplitude signal a and apply
the model and EKF to the problem of tracking the formants
through an entire sentence. The sentence is “Where were
you while we were away.” from the TIMIT database [4,

drl/msjs1/sx9]. The model has 4 formants with initial con-
ditions my, o of 450, 1300, 2000, and 3100 Hz for : = 1, 2,
3, and 4 respectively. For all 4 formants, aq, = ., = .99,
qv; = 12, ps 0 = 0, and pg; 0 = 0. The values of ¢,, and
g4, vary from formant to formant: g.;, = 50,30, 10, 1; and
qu; = V5,v/22,2,2 for i = 1,2,3,4 respectively. Finally,
r = y/1/12. The spectrogram of the original speech with

superimposed plots of the estimates f;(k) is shown in Fig-
ure 3(a). [The spectrogram is computed by dividing the sig-
nal into 8 ms frames (each contains 128 samples) with 4 ms
(64 sample) overlap between adjacent frames and then com-
puting the magnitude (in dB) of the 128 point FFT of each
frame]. In Figure 3(a), the formant tracks extend through
regions of the spectrogram where there is little energy be-
cause at sample k we plot the *" formant track fi(k) even
when the energy in the i*" formant (essentially the energy in
ai(k)) is small. Figure 3(a) demonstrates excellent tracking
of the formants in this sentence in spite of large and rapid
variation in the formant frequencies.

From the EKF outputs we compute the reconstructed
speech signal (k). In Figure 3(b) we show the spectrogram
of §(k) which is very similar to the spectrogram of y(k)
shown in Figures 3(a).

6. DISCUSSION

In this paper we describe the MBDA algorithm. We are
currently investigating the performance of MBDA for other
speech processing problems, such as speech coding, and
comparing the performance and computational complexity
of MBDA with alternative algorithms, such as DESA-1 [7,
Section 5.2].
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Figure 1: Chirp signal. (a) Original chirp signal. (b) Re-
constructed chirp signal.
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Figure 2: Chirp signal. (a) Estimated amplitude signal
(k). (b) Estimated formant frequency signal f(k). (c) Es-
timated Kaiser-Teager frequency signal (k). (d) Estimated
total phase signal ¢(k).

766



4000 T T ! T T

A2500 e ..... H : . EEPIPE £ 3 ¥ '. ............... :

Frequency(Hz

200 400 600 800 1000
Time(ms)

Frequency(Hz)

] : 3 £ 1 5 B
0 200 400 600 800 1000
Time(ms)
(b)

Figure 3: Spectrogram and formant tracks for the sentence “Where were you while we were away.” (a) Spectrogram of
original signal and formant tracks. (b) Spectrogram of reconstructed signal.
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