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ABSTRACT

This paper presents a new method for decomposition of
the speech signal into a deterministic and a stochastic com-
ponent. The method is based on iterative signal recon-
struction. The method involves: (1) Separation of speech
into an approximate excitation and filter components using
Linear Predictive (LP) analysis; (2) Identification of fre-
quency regions of noise and deterministic components of
excitation using cepstrum; (3) Reconstruction of the two
excitation components of the residual using an iterative al-
gorithm; (4) Finally, the deterministic and stochastic com-
ponents of the excitation are then obtained by combining
the reconstructed frames of data using an overlap-add pro-
cedure. The deterministic and stochastic components are
then passed through the time varying all-pole filter to ob-
tain the components of the speech signal. The algorithm is
able to decompose varying mixtures of stochastic and deter-
ministic signals, like the noise bursts produced at the glottal
closure and the deterministic glottal pulses. This new algo-
rithm is a powerful tool for analysis of relevant features of
the source component of speech signals.

1. Introduction

One of the objectives in speech analysis is to study the
characteristics of the source and system by processing the
speech signal. Normally the source is modeled as either
voiced or unvoiced, and for voiced, as quasiperiodic se-
quence of glottal pulses. But in real speech even the voiced
part consists of some random component, especially at the
glottal closure due to turbulence, and in weak voicing and
voiced fricatives. For synthesis, this random component
also must be included in the excitation in order to produce
a natural sounding synthetic speech. Moreover, this ran-
dom component may also help characterizing the nature of
the speech segment such as breathiness, roughness, etc. De-
tailed characterization of source mnay also help in generating
synthetic speech with desired voice characteristics [1].

In this paper we propose a new algorithm for decom-
position of speech signals into deterministic and stochas-
tic components. Several algorithms have been proposed in
the literature which are based on: sinusoidal representa-
tion [2], linear prediction (LP) and voiced/unvoiced deci-
sion for each frequency band [3], harmonic + noise model
[4]. The main differences in our approach compared to pre-
vious algorithms are: (1) Decomposition is performed on
an approximate source signal (LP residual); (2) With this
algorithm, the impulse-like behavior around the significant
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instants is captured, therefore there is no need for imposing
the harmonicity or continuity of sinusoids across the frames.
One does not need any frame synchronization or continuity,
as the new deterministic component from each overlapping
region of the frame is simply concatenated; (3) An itera-
tive algorithm is developed for estimating the noise part of
excitation. The noise part is subtracted from the signal to
obtain the deterministic component.

An important question with regard to the significance
of the deterministic and stochastic components is whether
these components represent some features of speech pro-
duction or they are merely a convenient representation of
signals. We have tested our algorithm on various natural
and synthetic speech signals containing a mixture of quasi-
periodic excitation and noise excitation. In all the cases
the algorithm demonstrated its ability in separating the two
components fairly accurately.

2. Description of the algorithm

We assume the following model for speech production:

s(t) = e(t) x v(t) = (p(t) + (1)) * v(t) 1)
where:
s(t) is the speech signal,
v(t) is the impulse response of the vocal tract system,
e(t) is the excitation signal,
p(t) is the quasiperiodic part of the excitation,
7(t) is the random part of the excitation.
In spectral domain we can write:

S(w) =] S(w) |
= (| P(w) | &°?“)4 | R(w) | &) | V(w) | &%)

(2)
(3)

Notice that: (1) The complex addition shows the rel-
ative importance of the magnitude and phase of each of
the components in the signal; (2) Depending on the Sig-
nal to Noise Ratio (SNR) at each frequency, the different
components of the excitation source get prominence. The
decomposition algorithm contains 5 main steps:

2.1 Extraction of linear prediction residual

Since the objective is to separate the components of
the excitation, an approximation to the source part of the
signal is derived by using the linear prediction residual (10
kHz sampling rate, 12th order LP analysis on overlapping
segments of 25.6 msec at 200 Hz analysis frame rate). The



residual is obtained by passing the speech signal through
an inverse filter. Each frame (25.6 msec) of the residual
is expressed in terms of the DFT coefficients. A 512-point
DFT was used in these studies.

2.2 Identification of the frequency regions of the
stochastic component using cepstrum

A voiced/unvoiced decision was done separately for each
frame. The decision is biased in favour of voiced frames
over the unvoiced frames. That is, it is designed to make
errors only in one direction (i.e., to label unvoiced frames
as “voiced”, rather than labelling voiced frames as “un-
voiced”). The errors in voiced/unvoiced labelling will be
corrected by further processing the voiced frames after de-
composition.
with almost no energy in frames incorrectly labelled as
“voiced”. All such “unvoiced” frames are moved to the
stochastic component. For voiced frames, each DFT co-
efficient is contributed by both the periodic part and the
random noise part. It is important to identify which sub-
set of the DFT coefficients should be combined to form
the deterministic component and which ones to form the
stochastic component. To reach this goal, we may consider
those frequency samples for which the deterministic compo-
nent is higher than the random component, and use those
frequency components in the summation. This is accom-
plished using cepstrum and a pitch detection algorithm for
identifying the regions corresponding to the system (vocal
tract) and the regions corresponding to periodic and ran-
dom parts of the excitation. Because of their distinct lo-
cations in the quefrency domain, the distributions of these
energies in the frequency domain can be obtained.

2.3 Identification of the stochastic component using
extrapolation

The ratio of the energies of the periodic and random
parts can be obtained at each frequency point. From the
ratio it should be possible to retain only those frequency
points which have a higher periodic component over the
noise component. Note that just knowing the SNR (ra-
tio of periodic to random parts) at each frequency point
does not enable us to separate the two components by sub-
traction, since at each frequency point there is contribution
due to both the periodic and random parts. According to
equation (3), it is necessary to nse knowledge of both the
amplitude and phase of the two components for separating
the components.

We propose an iterative procedure to overcome the above
difficulty. From the frequency distribution of the periodic
part in the log magnitude spectrum, we can hypothesize,
as a starting point, that the valleys between two harmonics
are mostly due to noise. Figures 1-3 illustrate the analy-
sis process, for a particular frame extracted of a vowel (Fo
=~ 120 Hz). Figures 1 and 2 demonstrate the effect of the
noise extrapolation algorithm. These figures correspond to
the magnitude spectrum of the noise components of the LP
residual signal after cepstral separation. Noise is set to zero
in the harmonic regions, and to the measured spectral val-
ues in the regions between harmonics. It is clear that such
a noise component cannot be representative of the speech
production mechanism. Using these noise regions, the noise
samples in the harmonic regions are estimated using an it-
erative algorithm. The iterative algorithm is based on a

One will obtain a deterministic component -
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spectral extrapolation algorithm similar to the Papoulis-
Gerchberg algorithm [5, pp-244-248]. Starting with zero
values in the harmonic regions and the actual DFT coeffi-
clents in the noise regions, an estimate of the noise samples
in the harmonic regions is obtained by iteratively moving
from frequency domain to time domain and vice versa, im-
posing finite duration constraint in the time domain, and
the known noise samples constraint in the frequency do-
main.

Stochastic, first iteration —-—
10

spactral magnitude
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Figure 1: Spectral magnitude of a frame of the noise com-
ponent for a vowel, before extrapolation

The following are the steps in the extrapolation algo-
rithm:

1. Take a 256 sample frame of LP residual signal.

2. Perform a 512 pt DFT.

3. Identify the harmonic regions in the frequency do-
main using cepstrum and a pitch determination algo-
rithm.

4. Set the DFT values in the harmonic regions to zero
and perform an IDFT to get an estimate of the noise
samples.

5. Set the noise samples beyond the 256 points to zero
and recompute the DFT.

6. Replace the DFT values in the noise regions to the
original values, and perform an IDFT to obtain the
next estimate of the noise samples.

7. Repeat steps 5 and 6 for a few(10-20) iterations. It is

interesting to see that during each iteration the noise
samples build up in the harmonic regions.

The extrapolation algorithm is continued until the dif-
ference (in terms of magnitude of the noise spectrum) be-
tween two successive steps becomes less than a given thresh-
old value. Figure 2 shows the spectral magnitude of the
noise component obtained after spectral extrapolation (us-
ing 10 iterations, compare with Figure 1).

2.4 Identification of deterministic signal
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Figure 2: Spectral magnitude of a frame of the noise com-
ponent for a vowel, after extrapolation (10 iterations)

Noise is reconstructed (in amplitude and phase) for ev-
ery frequency sample. Figure 4 represents the noise compo-
nent and the original DFT of the signal (dashed line: noise
component, continuous line: original DFT).

The deterministic component is obtained by subtracting
the noise samples from the residual signal. Nearly the same
result will be obtained starting with the DFT coefficients
in the harmonic regions, and iteratively building up the de-
terministic component, after subtracting an estimate of the
noise from the DFT coefficients in the harmonic regions at
each iteration. Figure 4 shows the same reconstruction as
in Figure 3, for the harmonic component. In this case, the
harmonic component energy is reduced between the har-
monic peaks, because some energy that was present at the
starting point was transfered to the noise component during
the iterative extrapolation phase.
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Figure 3: DFT for a voiced frame (continuous line), and
deterministic component (dashed line)

2.5 Synthesis.

For each analysis frame, the deterministic and stochas-
tic components are computed. The deterministic and stochas-
tic components of the residual are obtained for each over-
lapping analysis frame, and the component for the entire
utterance is derived by simply adding the values in the
overlapping regions in successive frames. The speech sig-
nals corresponding to these components can be generated
by passing these component residual signals through the
time varying all-pole filter.

3. Results

The algorithm presented above was applied to several
natural and synthetic speech signals. One of the aims of this
work was to develop a speech signal decomposition method
which is relevant from the speech production point of view.
Figure 5 illustrates the capabilities of the method for non-
stationary noise decomposition.

The first picture (top) represents a realistic excitation
signal for a vowel or a voiced consonant. This signal is made
up of synthetic glottal pulses (Liljencrants-Fant Model),
with synthetic pulses of noise synchronized with the glot-
tal closure epochs. The breathiness of the resulting voice
depends on the amplitude and duration of the aspiration
noise, which is introduced by synchronized noise pulses.
Therefore, it is important to decompose the signal in such
a way that both the frequency domain and the the time
domain characteristics of the glottal pulse and noise ex-
citation signals are well represented. The second picture
{(middle) shows these synthetic pulses of noise in isolation.
They were generated as the product of white noise signal
and a rectangular wave. This synthetic voiced excitation
signal was passed through an all-pole filter corresponding
to the vowel /a/. The synthetic speech signal was analyzed
using our decomposition algorithm. The third picture (bot-
tom) represents the stochastic component extracted from
the residual signal of the synthetic vowel. Middle and bot-
tom pictures are very similar. The algorithm successfully
separated the deterministic and stochastic components in
the time domain. .

Systematic assessment of the algorithm have been con-
ducted. Noise is a rather vague concept that encompass
various physical situations in voiced excitation. Among the
sources of noise that can be considered, we paid particular
attention to additive pulsed noise in the residual (aspiration
noise), additive continuous noise in the residual (frication
noise), effect of jitter, effect of shimmer, effect of Fy vari-
ations. The algorithm demonstrated excellent capabilities
in decomposing the components in aspiration and frication
noise analysis. Large jitter and shimmer values (jitter > Fy,
shimmer > 1.5 dB), or large Fy variations within a frame
increase the energy in the stochastic part. This effect might
be partly considered as an artifact, because Fy changes are
not random excitation noises. The status of shimmer is
more intricate. The effect of large shimmer values is a
degradation of the stochastic signal, and a smoothing of
the deterministic signal. Ideally, one would prefer to an-
alyze perturbations of the glottal pulse (i.e., Fo changes,
jitter and shimmer) on the one hand, and random noise ex-
citation (i.e. aspiration and frication noise, transients), on
the other hand. With our method, both are merged in the
stochastic component.
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Finally, the results demonstrated that the new algo-
rithm is a powerful tool for analysis of the noise component
in the excitation part of speech signals.
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Figure 4: DFT for a voiced frame (continuous line), and
stochastic component component (dashed line)
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Figure 5: Synthetic glottal pulse with aspiration noise (top).
Synthetic aspiration noise of top signal alone (middle, am-
plitude increased). Stochastic component extracted from
top signal (bottom, same amplitude as middle).



