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Abstract

This paper presents a class of quadratically weighted
distortion measures which provide optimal performance
Jor the high rate vector quantization (VQ) of linear pre-
dictive coding (LPC) parameters. It is shown that the
quantization distortion of a high rate VQ converges to
a quadratically weighted measure, where the quadratic
weighting matriz is a “sensitivity” matriz, which is a
generalization of the scalar sensitivity concept to the
vector case. The sensitivity matriz is the second order
term of the Taylor series ezpansion of the original dis-
tortion measure. Closed form ezpressions and compu-
tationally efficient methods for computing the sensitiv-
ity matrices of the different LPC parameterizations are
gtven, which involve no numerical integration and can
be implemented in real-time on modern DSP chips. In
the general case, the “sum of sensitivity weighted scalar
errors” is not equivalent to the original distortion mea-
sure. However the sensitivity matriz of the line spectral
pair (LSP) frequencies is ezactly diagonal, demonstrat-
ing that for LSPs only a “sum of sensitivity weighted
scalar errors” will result in optimal performance.

Introduction

The linear predictive coding (LPC) model for speech
is often used in modern mid-to-low rate speech com-
pression systems, and much work has been done on
quantization of the LPC filter coefficients. Recent work
on high quality speech coding systems has focussed on
determining LPC quantization schemes which require a
minimal number of bits per vector of LPC coefficients,
while achieving a low Log Spectral Distortion (LSD)
between the unquantized LPC vectors and the quan-
tized LPC vectors. Designing a quantizer which di-
rectly minimizes the overall LSD is difficult due to the
complexity of the LSD measure, and typically quantiz-
ers are designed to minimize simpler distortion mea-
sures, such as mean squared (MSE) or weighted mean
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squared error (WMSE) between the original and quan-
tized LPC coefficients, reflection coefficients, log area
ratios (LARs), arcsine parameters, or LSP frequencies.
This paper introduces a class of quadratically
weighted distortion measures which are optimal for
high rate quantizers. It is shown that, at high rate,
the distortion incurred by quantizing a vector ap-
proaches a simple, quadratically weighted error, where
the quadratic weighting matrix is called the “sensitiv-
ity matrix.” The diagonal terms of the sensitivity ma-
trix are related to the scalar sensitivities of the pa-
rameters, and the off-diagonal terms are related to the
interactions which occur when multiple parameters are
quantized simultaneously. Closed form expressions and
computationally efficient algorithms are given for com-
puting the sensitivity matrices of LPC coefficients, re-
flection coefficients, LAR parameters, arcsine parame-
ters, and LSP frequencies. Importantly, the sensitivity
matrix for LSP frequencies is shown to be diagonal,
implying that for LSP frequencies only a vector quan-
tizer trained by minimizing an appropriate weighted
WMSE measure (i.e. the “sum of sensitivity weighted
scalar errors”) will result in optimal performance.

Distortion Measures at High Rate

This section describes the properties of the quanti-
zation distortion in high rate vector quantization sys-
tems, and uses these properties to derive simple distor-
tion measures which provide optimal performance at
high rate. _

Let d(z,Z) be a continuously differentiable distor-
tion function which measures the distortion in quan-
tizing the vector & to the vector Z. For example, the
LSD measure satisfies these conditions, where the LSD
in dB? is given by

L5D(a,a) = 2 [ (n(1A@)?) - (| A@w) ) d.
27 J_,

Here 8 = (10/In(10))?, A(w) = 1 — 3_;_, a;¢?“*, and
A(w) =1-37_; @;¢?“*. Performing a multidimensional
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Taylor series expansion of d(z, &) about « = Z, holding
the second vector in d(, Z) constant, and noting that
the first and second terms of the Taylor expansion are
zero, results in

d(z,3) = 3(z ~ 2)T D(E)(z - 7) + O(l|z - &|1"

where D(&) is an n by n dimensional matrix with j, kth
element defined by

2 -~
Dip@) = ZIAZE)

.’Ejazk =
For most common distortion measures, including the
LSD, D(=x) is positive definite. As the rate of a
quantizer increases, the distance between a vector
and its closest quantization vector, as measured by
d(x,z), approaches zero, i.e. ||z — Z|| gets small
VY& quantized to &, so

d(z,z) — -1— z-z) D(z)(x—%); Ve quantized to
2

D(z) is here termed the “sensitivity matrix,” since its
elements represent the relative sensitivities of quantiz-
ing the various parameters. The diagonal elements
of the sensitivity matrix are the scalar sensitivities
which represent the degree to which quantization error
in a particular scalar parameter increases the overall
distortion. The off-diagonal elements represent cross-
sensitivity terms, which relate to the interactions which
occur when multiple parameters are quantized simulta-
neously. In general, the sensitivity matrix is not diago-
nal, and the “sum of sensitivity weighted scalar errors”
will not converge to the true distortion measure.

~ The above discussion shows that, in high rate vector
quantizers, only the second order term in the Taylor
series expansion of the distortion measure is relevant.
If a high rate vector quantizer is trained by minimizing
the expected value of the quadratic distortion measure

(1)

the resulting quantizer will approach the optimal vec-
tor quantizer which has been trained by minimizing the
original distortion measure, d(z,Z). There are several

advantages which can be gained by using d rather than
d in training and quantizing. First, it is easy to com-
pute the centroid of a quadratic measure such as in
equation 1, whereas it may be impossible to compute
the centroid of the original error measure. This allows
the quantizer to be built using the generalized Lloyd
or LBG algorithms. Without the existence of an ex-
pression for the centroid of a region, constructing a
quantizer becomes difficult or impossible. Second, the
complexity incurred in computing the distortion mea-
sure for each vector in X during quantization may be
much less for the quadratic error measure than for the
true error measure. This quantization scheme involves

d(2,3)) = (= ~ &) D(a)(= - 3),
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computing the actual D(x) during quantization only
once per input vector. In the next section it is shown
that this computation is simple for many parameter
sets used in LPC parameter quantization schemes.

LPC Sensitivity Matrices

Denote the set of LPC filter coefficients correspond-
ing to a vth order LPC filter by the vector

a= [alaz...a,,]T.

Most systems for compressing telephone bandwidth
speech use a linear prediction filter of 10th order, i.e.
v = 10. By taking derivatives, it can be shown that
(1, 2]

9’L5D(a, @) = 4B8Ra(k - 1),

6(_1k 6&{ a=a

where R4(k) is the autocorrelation of the LPC filter
impulse response, h(n), i.e.,

Ra(k) = i h(n)h(n + k).
n=0

Hence, the sensitivity matrix with respect to the LPC
coefficients, is

DA(G.) = 4,3RA,
where
R4(0) Ra(1) Ra(v—1)
Ra(l)  Ra(0) Ra(v—2)
Ry = : :
Ra(v—1) Ra(v—2) RA(0)

is the standard symmetric Toeplitz autocorrelation ma-
trix. For the “autocorrelation” method of traditional
LPC analysis, the elements of R, are the computed
autocorrelation values of the input frame of speech di-
vided by the vth order prediction error. This means
that, for LPC coeflicients, the sensitivity matrix is easy
to compute in real-time, and the computation involves
no numerical integration techniques. Training a high
rate VQ by minimizing this quadratically weighted er-
ror measure can be shown to be equivalent to training
a VQ by minimizing the standard linear prediction er-
ror, and the Itakura-Saito measure: VQs trained by
minimizing these measures, e.g. [3], will approach the
optimal performance in LSD as the rate gets large.
There are several one-to-one vector functions which
transform the vector of LPC coefficients, a, into an-
other length v vector, p, e.g. reflection coefficients,
LSP frequencies, etc. Denote the transformation from
LPC vector a to the parameter set p by the function
p(a) and the reverse transformation by a(p). Then,

0%d(a(p), a(p))

aﬁk 6{’{ pzp



-y Z dam (p) 6°d(a(p), @) dan(p) _
6pk aa'm aan 3Pl ﬁf;(pp)

m=1ln=1
In more revealing matrix form, this says that the sec-
ond derivative matrix with respect to p is

D,(p) = J; (p)Da(a(p))J 5 (p) (2)

where J(p) is the n by n Jacobian matrix of the trans-
form a(p), which has its j, kth element defined by

8a;(p)

(Jp(P))jk = 95 (3)

p=p
Then, the distortion incurred by quantizing the vector
p to p is, at high rate,

d(a(p),a(®)) & 3(p— ) Dy(p)(p - 7)

1 _ _
= 5(p— )" J; (P)Da(a(p)) T, (p)(P - B)-
This result holds for continuous one-to-one parameter
mappings.
For the Log Spectral Distortion measure in particu-
lar,

Da(a(p)) = 46Ra4,

and the sensitivity matrices for reflection coefficients,
LSPs, etc., can be found by multiplying the autocorre-
lation matrix on both sides by the appropriate Jacobian
matrices.

Reflection Coefficient Sensitivities

The LPC coeflicients can be transformed into the
vector of reflection coeflicients, k, and vice versa, us-
ing well known methods[4]. In order to determine the
sensitivity matrix for the set of reflection coefficients,
the Jacobian matrix of the mapping from the reflec-
tion coefficients to the LPC parameters, Ji(k), must
be computed. The matrix Ji (k) can be partitioned as

Jr(k) = [J'k1|.1'k,| . "!jk‘,] .

The “step-up” procedure [4] for converting the re-
flection coefficients to LPC coefficients can be written
in matrix form as

1 1

[4]mmen[i]
where

[ 1 . 0 . km 7
Kn= kmok"‘ O 101 0

_ 0 0
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In the above expression, the matrix K, is symmetric,
the upper left matrix block is m + 1 by m + 1 and the
lower right matrix block is ¥ — m by v — m. Taking
derivatives of both sides of equation 4 with respect to
k. reveals that

0 1
[ 3 ] =Ky K1 LnKno1 K, [ o ]
where
0 1
' 0
L, = 1

0 10

In this way, the vector j, can be determined by per-
forming the traditional step-up procedure, but replac-

ing the iteration a,{m} = a,{m—l} + kmal™7! with the

m-~3

iteration a,{m} = a,{,.‘"l';l} only at the mth stage. To de-
termine the entire Jacobian matrix, this modified step-
up procedure can be run for each m from 1 to v to
determine each of the columns. Much of the computa-
tion at the mth step is the same as that at the m — 1th
step, and efficient algorithms for determining the entire
Jacobian matrix can be developed.

Since the LAR and Arcsine parameters are one-to-
one scalar functions of the reflection coefficients, i.e.
LARy = f(km) and ARCSINE,, = g(ky,), the Jaco-
bian matrices of the transformations from LARs and
Arcsines to LPC parameters are simply the Jacobian
matrix of the transformation from reflection coeficients
to LPC parameters, with the columns of the Jaco-
bian matrix scaled by 1/f'(kn) and 1/g¢’(km) respec-
tively [1, 2]. Thus, the complexity required to com-
pute the sensitivity matrices of the LAR and Arcsine
parameters is similar to that required to compute the
sensitivity matrix of the reflection coefficients.

Line Spectral Pair Sensitivities

The LSP frequencies are another set of parameters
often used for LPC quantization. The LSP frequencies
are the angular frequencies of the roots of the polyno-
mials

P(z) = A(z) + 2~ ("+DA(z"1)
and

Q(z) = A(z) — z~+D A1),

which exist on the unit circle in the first and second
quadrant of the complex plane. Let the LSP frequen-
cies be denoted by the vector w with elements w; w,

“+, Wy, so the roots of P(z) correspond to the odd
indices and the roots of Q(z) correspond to the even
indices. Then, the mapping from the set of LSP fre-
quencies to A(w) is given by

A) = 5(P@) +Q(w))



where
P(w) = (1+¢77%) H (1 —2coswie™ 4 ¢~ %%)
iodd
and

Q(w) = (1 - e—jw) H (1 - 2C05wie—jw + e"'zj“’) .

teven

For notational purposes, define po(n) = 6(n)+6é(n—
1), pi(n) = 6(n)-2 cosgwg,-_1)5(n—.1)+6(n—2), do(n) =
6(n)—é(n—1), and §i(n) = 6(n) —2 cos(wzi)6(n—1)+
6(n—2), and define p;(w) and g;(w) as the discrete time
Fourier transforms of p;(n) and §;(n), so

v/2

Pw) = [ #:w)
i=0

v/2

Q) = T & w).
=0

and

The sensitivity matrix for the LSP frequencies is
given by

D (w) = 48J T (w) R 4T (w), (5)

where J, (w) is the Jacobian matrix of the transforma-

tion from LSP frequencies, w, to LPC coefficients. If
the n, ith element of the Jacobian matrix is denoted by

fa, (@)

% 1< n,i<v
Wi

@W=w

ji(n) =

then simple differentiation reveals the discrete time
Fourier pair

8P(w) . .
ji(n) A4 Ji(UJ) = aA(w) = %%zil odd
Ow; %agw(:, i even

sin(w; Je ™3¢ H;izozj;é(i+1)/2 Pj(w); i odd

sin(w;)e~ ¥ H;i%:j#/? gj(w);i even

Thus, the elements of the Jacobian matrix for the LSP
to LPC transformation can be found by determining
the coefficients in equation 6. For example, the co-
efficient corresponding to the e=“ term in J;(w) is
equal to j;(3). Given the Jacobian matrix and the au-
tocorrelation matrix R4, the sensitivity matrix for the
LSP frequencies can be evaluated. The overall compu-
tation of the optimal weightings for the LSP frequen-
cies requires no divisions, square roots, or power com-
putations, which are typically time consuming opera-
tions in real DSP implementations. The computation
requires about 1000 multiply-accumulates per frame,
which can be easily performed in real-time on modern
DSP chips. Source code for computing these weightings
can be found in [1, 2.

The following theorem states an important and sur-
prising result.
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Theorem
Fork#£ [ 1<kl <v,

0LSD(a(w), a(@)) -0
6&7];8(&3[ D=Ww -

where w; is the ith LSP frequency. This theorem states
that the sensitivity matrix for the LSP frequencies is
diagonal. The proof of this theorem is given in [1, 2].

An important consequence of this theorem is that,
at high rate, the sum of sensitivity weighied scalar er-
rors in LSP frequencies is equivalent to LSD! This im-
plies that a high rate VQ constructed by minimizing
this relatively simple measure will achieve the mini-
mum possible LSD. Also, this makes the computation
of the LSP sensitivity matrix simple, since only the di-
agonal elements need to be computed. The sensitivity
matrices of the LPC coefficients, reflection coefficients,
LAR parameters, and arcsine parameters are not diag-
onal, and thus the “sum of sensitivity weighted scalar
errors” in these parameter sets are not equivalent to
the LSD at high rate.

The optimal LSP weightings have been tested on
split 3-3-4 VQs of LSP parameters, and the perfor-
mance of the VQs trained using these weightings is
superior to that of VQs trained by minimizing the dis-
tortion measures used in [5, 6]. The full results of these
experiments are reported in {1, 2]. At high rates leading
to average LSDs of 1-2 dB?, VQs trained by minimizing
the optimal measure presented here gave performances
0.5-1.0 bits better than VQs trained by minimizing the
measures used in [5, 6], and 2.5 bits better that VQs
trained by minimizing the unweighted sum of squared
errors in the LSP frequencies. These results indicate
that although the optimal measure produces results su-
perior to those produced by the measures proposed in
[5, 6], these other measures are not far from the optimal
measure. A theoretical analysis of the performance of
VQs which are trained by minimizing suboptimal dis-
tortion measures, such as in [5, 6], has also been devel-
oped, and can be found in [1, 2, 7).

(Du(w))ks =
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