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ABSTRACT

This paper presents an algebraic vector-quantization scheme
for encoding the LSF parameters used in describing the time-
varying short-term spectrum of speech in many modem
vocoders. The quantizer achieves an average spectral
distortion of 1 dB at 28 bits/frame for the telephone
bandwidth. The scheme is based on low-dimensionality
regular-point lattices. Properties of lattices are taken
advantage of in both the design and the search of the
quantizer codebook. Namely, this algebraic codebook need
not be stored in memory and the optimum vector is found
through simple rounding of the input variables instead of the
usual exhaustive search. Thus, the scheme results in
significant savings of memory and reduced computational
complexity when compared to traditional vector-quantizer
solutions.

1. INTRODUCTION

The linear predictive coding (LPC) method is one of the most
popular approaches for describing the time-varying short-
term spectrum of the speech signal. In many speech coding
systems, LPC coefficients are transformed to the line
spectrum frequency (LSF) parameters which are a very
effective representation for quantization of the LPC
information [1][2]. The LSF's are related to the poles of the
LPC filter (or the zeros of the inverse filter) in the z-plane.
For a 10th order LPC analysis, the z-transform of the LBPC
inverse filter is denoted by

A@ =1+az! + - +a;5z10. (1
From (1), two new polynomials are defined :
P(z) = A(@) + TVIA@z) 2)
and
Q(z) = A2) - z1AzY). 3

The roots of these polynomials are usually called the line
spectrum pairs or the line spectral frequencies (LSF's). Some
important properties are described in detail in [1] - [4].

Recently, some vector-quantization schemes of LSF
parameters have been developed and “transparent quality”
quantization [3], defined by a 1 dB spectral distortion, was
achieved by these schemes [3] - [6]. A drawback of these
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techniques is the large amount of memory required to store the
codebook and the high complexity of computation used in
comparing the input vector to each codevector. The problem
can usually be resolved at the cost of reduced performance of
the quantizer.

An algebraic vector-quantization algorithm which is based
on regular-point lattices is proposed in this paper. From a
geometric standpoint, a lattice is a regular arrangement of
points in n-dimensional Euclidean space R*. From an
algebraic standpoint, an n-dimensional lattice is a collection
of vectors which form a group under ordinary vector addition
in R*®. The simplest n-dimensional lattice is the integer
lattice Z" which consists of all vectors with integer
coordinates [7].

In this work, low-dimensionality regular-point lattices are
used to design vector quantizers that can be used in real-time
speech-coding algorithms. Some of the properties of lattices
are taken advantage of for both efficient designing and
efficient searching of the quantizer codebook. Firstly, the
codebook is not stored in memory. The codevectors are a
subset of the points of an integer lattice. They are indexed by
an algebraic method. Secondly, the search for the nearest
neighbor in the codebook to some input vector can be done
very efficiently because of the lattice regular structure.

2. ALGEBRAIC ALGORITHM FOR VECTOR
QUANTIZATION OF LSF PARAMETERS

In this section, we describe the algebraic vector quantization
of LSF parameters. The speech database used in the design is
based on speech spoken in seven languages. It consists of
93,500 LSF parameter vectors resulting from a 10th order
LPC analysis performed every 24 ms speech frame.

The ten LSF parameters are ordered points on the [0, =]
interval (Fig. 1). Four independent sub-quantizers are used:
one absolute vector quantizer (VQ) in two dimensions, one
relative differential VQ in two dimensions and finally two
relative differential VQs in three dimensions. The absolute
quantizer is used for quantizing jointly the 3rd and 7th LSF
parameters. This is the only non-algebraic vector quantizer
(NAVQ) with a stored codebook of size 64 which is designed

by using the LBG or K-means algorithm [8]. Let us call, 6)3

and (?)7. the corresponding transmitted values.
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Fig.1. LSF parameters in the angular frequency domain.

716



The eight remaining LSF parameters are divided into three
groups. The pair @; and w,, the triplet @y, ws and wg and the
triplet wg, Wy and w;9. Each group is quantized using one of
the three above-mentioned differential vector quantizers. The
three vectors to quantize, x;=(x;;, X;2), ¥2=(X2}, X22, X23)
and x3=(x3;, X33, X33), are defined as follows

,

®
*n= =L
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< . . 4
@;-0, “
Xpp = @
L 3
( w,~d
Xny = == =
21 _
W; =Wy
e PP RS
X = Th, + where 0, =X (0; —@5)+ 05 (5)
W;—ay
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x23 = TER—
L @7~ 03
and
( @
v =28 s
3T p-w,
J Wy — Qg .. . .
X3 = 1:—(2)7 ; where wg =2 (R—w;)+ @, . (6)
-0,
*33 = n—@,

The components of these vectors represent LSF differences
normalized in such manner that the sum of the components
add to one. The statistical joint distribution of the two
components of x; is confined to a rectangular isosceles
triangle (Fig. 2). For this reason we shall call the quantizer a
“triangular VQ". Similarly, the joint distributions of
components of the three-dimensional vectors x, and x; are
confined to the shape of a simplex (i.e.: a pyramidal region)
(Fig. 3) and consequently we shall call the corresponding
quantizer a "simplex VQ". An approach is now presented for
designing both the triangular vector quantizer and the
simplex vector quantizers based on lattices.

The triangular vector quantizer (TVQ) codebook consists of
points of a regular-point lattice which form a rectangular
isosceles triangle in the plane. The sum of the components
of each codevector is a positive even (/ odd) integer no
greater than some fixed quantity, N. For instance, a
codebook of size 64 is obtained in this fashion by
considering the set of integer-component vectors with an
even sum no greater than N = 14. This codebook is shown in
Fig. 4.

The TVQ codebook is not stored in memory. The
codevectors are indexed according to an algebraic rule which
we shall soon discuss. The index of the selected codeword is
transmitted through the channel. At the receiver, the
codevector is found from the received index. In order to use
this codebook with integer-component codewords we need to
scale the input vector x;.
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Fig.3. Statistical joint distributions of components of x;
and x;.

For the example of Fig. 4, the codevectors are indexed from 0

to 63. The TVQ codebook is split into several “levels”
according to the sum of the codevector components. It can be
seen from the figure that levels 0, 1, 2, ..., 7 contain 1, 3, §,
.., 15 codevectors, respectively. Evidently, the number of
codevectors constitutes an odd arithmetic series. The index
kg of the first codevector at a certain level is set equal to the
number of codevectors lying at lower levels. Hence, the
index of a any codeword at this level is obtained as the sum of
the “offset”, kj, and the codeword rank within the level. It is
easy to verify that the nth partial sum of this arithmetic
series is 1 + 3 + 5 +7 + - + (2n - 1) = n%. Therefore, the
index, k, of a codevector ¢ = (c;, ¢;) is given by

2
) +cy.

In Fig. 4 the codevectors have an even component sums. It
is also possible to consider codevectors with odd component
sums. In this case the indexing scheme is slightly different.
The numbers of codevectors at successive levels form an even
arithmetic series so that the index k of any codevector in this
case is given by

c+ ¢y
2

k=b+q=( %

®

At the receiver, we first extract ky from the received index &
and then deduce ¢; and c;.



15

10 25 &8 o7

W
o.
)
o,
©
Y
w
o

d
¢ & 80 Jl & &

0 5 10 15 CI

Fig.4. TVQ codebook of size 64 codewords with even
component sums of no greater than N = 14.

Let us now discuss a fast procedure to find the closest
codevector, in the MSE sense, to an arbitrary vector z. The
following transform matrix,

11
T= [ ] , &)
‘101

is used to rotate the vector z through a counterclockwise
angle of % radians. We then round off each component of

the rotated vector to its nearest even integer to find the
closest “rotated codevector”. By inverse transform we readily
find the closest codeword meeting the even parity condition,
namely, that the sum of its integer components be even
(/ odd). Finding the closest codeword can be done in an
alternate way described in [9] by recognizing that the
problem amounts to finding the nearest neighbor in the so-
called D, lattice.

Just as in the TVQ case, the simplex vector quantizer (SYQ)
codebook is also a finite region of the regular-point lattice in
three dimensions and is not stored in memory. For example,
Fig. 5 shows a codebook of size 125 with an odd sum of
components no greater than N = 9.

The encoding and decoding of SVQ are similar, in many
ways, to the procedure used in the TVQ case. Again we need
to scale the three-dimensional input vector to match to the
simplex codebook. For the example illustrated in Fig. 5, the
codebook comprises five levels which have 3, 10, 21, 36 and
55 codevectors, respectively. The series corresponding to
the number of codevectorsis 1-3+2.5+ ... +n(2n+1) and
the nth partial sum of this series is givenby 1.3 +2.5+ ...

+nQn+1)= LTntn+ 1@n +5).

Now let ¢ = (¢}, ¢3, ¢3) be any codevector and s =¢; +¢; +¢3
the sum of the components of ¢. The index kg of the first
codevector at this level can be expressed as

ky = %m(m +1)4m +5) (10)

Thus, the index k of the vector ¢ is given

Fig.5. SVQ codebook of size 125 codewords with odd
component sums of no greater than N = 9.
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For the case of codebooks designed with vectors having an
even sum of components, we have

ky = %m(m+ 1X4m - 1) (12)

where m = -% , and the index k is also given by the

expression (11).

The codebook search in SVQ is somewhat more complicated
than in TVQ. We see from definitions (4) through (6) that,
whereas the components of the two-dimensional vector x;
are independent, and the first two components of the three-
dimensional vector x; (or x3) are correlated in the sense that
the difference, x5 (or x35), depends on the quantized value

%,,(or 3;). Recall that a codevector has integer components

such that the component sum is even. This three-term-parity
condition entails that either (only) two components are odd
or none are. The component, x;;, can be rounded to either
the nearest even integer or the nearest odd integer. We will
consider both cases and retain the best choice from an
overall-MSE-performance standpoint. First, we consider the
nearest even integer of x;; and compute the corresponding
%,;. We then jointly quantize the pair, X33, X23, by rounding
both variables to integers values such that the three-term-
parity condition is met. Note that in this first case the last
operation amounts to finding the nearest neighbor in the D;
lattice [9]. Second, we consider the nearest odd integer of
x2;, and repeat the same steps. Finally, the closest
codevector is found by comparing the squared error
distortions between the original vector and each of the
reproduction vectors resulting from the two cases.

In order to obtain a better quantization performance, a non
uniform bit allocation scheme is devised for any given bit
rate. Since the LSF parameter numbers corresponding to each
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differential vector are different, the two-dimensional vector
x; is quantized with less bits and the three-dimensional
vectors x; and x3; with more bits. However, the non-
algebraic vector quantizer always has 64 codevectors (6 bits)
in its stored codebook. Table I shows the bit allocation
scheme for different bit rates (in the range 26-29 bits/frame).

3. QUANTIZATION PERFORMANCE

The large database mentioned earlier was used in evaluating
the performances. The distortion measured is the spectral
distortion (SD) between the original and quantized LSF
parameters. The LSF parameter quantization performance of
the algebraic vector quantizer is shown in Table II for
different bit rates. It appears from this table that the 28
bits/frame algebraic vector quantizer can achieve an average
spectral distortion of about 1 dB, less than 2% outliers in the
range 2-4 dB, and no outlier having spectral distortion
greater than 4 dB. Fig. 6 shows the histogram of the spectral
distortion for this result.

4. CONCLUSION

In this paper, an algebraic algorithm for vector quantization
of the LSF parameters of speech has been presented. Both the
triangular vector quantizer (TVQ) and the simplex vector
quantizer (SVQ) based on regular-point lattice have been
designed to jointly quantize vectors LSF differences, two or
three such differences at a time. The 28 bits/frame algebraic
vector quantizer can achieve the commonly accepted
conditions for transparent quality quantization of LPC
information: an average spectral distortion of about 1 dB,
less than 2% outlier frames having spectral distortion in the
range 2-4 dB, and no outlier frame with spectral distortion
greater than 4 dB. When contrasted with traditional VQ
solutions, the algebraic-vector-quantizer approach just
described results in significant savings in terms of memory
requirement and the codebook search is reduced to a few
rounding operations.

TABLEI
BIT ALLOCATION FOR DIFFERENT BIT RATES
Rate Bit Allocation (bits)

(bits/frame)| NAVQ TVQ SVQ1 SVQ2

26 6 5 8 7
27 6 5 9 7
28 6 5 9 8
29 6 6 9 8

TABLEII

SPECTRAL DISTORTION (SD) PERFORMANCE
OF THE ALGEBRAIC VECTOR QUANTIZER

Rate SD Outliers (%)
(bits/frame) (dB) 2.4 B >4 dB
26 1.17 3.06 0
27 1.10 2.18 0
28 1.04 1.80 0
29 0.99 1.52 0

2x10‘

15

Count
P

05

1 1

0 1 2 3 4 5
SD (dB)

Fig.6. Histogram of the spectral distortion (SD) for the 28
bits/frame algebraic vector quantizer.
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