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ABSTRACT

A self-learning adaptation technique is presented which
handles the speaker and channel induced spectral variations
without enrollment speech. At the acoustic level, the distortion
spectral bias is estimated in two steps using the unsupervised
maximum likelihood estimation: in the first step, the probability
distributions of the speech spectral features are assumed uniform
for severely mismatched channels; in the second step, the spectral
bias is reestimated assuming Gaussian distributions for the
spectral features. At the phone unit level, unsupervised sequential
adaptation is performed via Bayesian estimation from the on-
line, bias-removed speech data, and iterative adaptation is further
performed for dictation applications. Over four 198-sentence test
sets, on a continuous speech recognition task with vocabulary
size = 853 and grammar perplexity = 105, the largest increase of
average word accuracy is 85.2% from the baseline accuracy of
—-0.3%, and the maximum average word accuracy is 89.4% from
the baseline accuracy of 56.5%.

1. INTRODUCTION

The current work presents a self-learning technique for
improving speaker-independent continuous speech recognition,
which performs speaker and channel adaptation while a speech
recognizer is used for a certain application, without taking
enrollment speech from the speakers. The adaptation is based
on a decomposition of the speech spectral variation sources
into two categories: one acoustic and the other phone-specific
[1,2]). The acoustic source is attributed to speakers’ physical
individualities and linear channel distortions that cause spectral
variations independent of phone units; the phone-specific source
is attributed to speakers’ idiosyncrasies and piecewise linear
channel distortions that cause spectral variations dependent on
phone units. The baseline speaker-independent continuous speech
recognition system is based on the hidden Markov models of
phone units: each phone unit has three states, and each state is
modeled by a Gaussian mixture density {3].

A general concem on incorporating self-learning adaptation
into continuous speech recognition is whether it would lead to
diverged results under adverse conditions. In the current study,
experiments have been performed on speech data collected under
various conditions, where the worst case has the double problems
of an unmatched microphone and a too-close distance between the
microphone and the mouth. Since the probability distributions
estimated from the training data is grossly inadequate under
the severely mismatched and unknown channel conditions, the
spectral bias of the acoustic source is first estimated under
the assumption that the distorted speech spectral features are
uniformly distributed. Based on the knowledge of this spectral
bias, the trained speech models are used to reestimate the
spectral bias in order to improve the estimate accuracy. After
removing the bias, unsupervised sequential adaptation on the
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phone model parameters is performed via Bayesian estimation
from the increasing amount of on-line speech data. For certain
applications where delaying recognition output is permissible,
for example, voice dictation, the recognition accuracy can be
improved by iteratively adapting the phone model parameters
and decoding the speech, making use of all the available speech
data at the end of a session. ’

Relating to other efforts in the field, using unsupervised
maximum likelihood estimation for spectral bias estimation was
proposed in [4]; two independent efforts on unsupervised phone
model adaptation were reported in [5,6]. The current work is
presented in four sections: the self-learning adaptation method is
described in Section 2; the experimental results are presented in
Section 3; a summary is given in Section 4.

2. SELF-LEARNING ADAPTATION

The self-learning speech recognition system is illustrated
in Fig. 1. Assuming the speaker ¢ speaks one sentence at a
time, the adaptation is implemented in two sequential steps for
each sentence. The first step is performed before decoding
the sentence, where the spectral bias is estimated from the
current sentence and these spectra are subsequently normalized.
The second step is carried out after decoding the sentence,
where the parameters of the phone models are adapted via
Bayesian estimation. In the second step, the adaptation data are
prepared via the Viterbi segmentation of the sentence into phone
segments according to the recognized word string. The adapted
phone models are then used to recognize the next sentence
utterance. When delaying the decoding output is permissibie,
at the completion of a session, the recorded sentences are reused
to iteratively adapt the phone model parameters and to recognize
the sentences until the recognition results are converged.
2.1. Acoustic Normalization

Assume that the phone model parameters of a standard
speaker are estimated from a speaker-independent training
set, where the phone models are unimodal Gaussian den-
sities M(pi,Ci), i = 1,2,---,I. For a speaker g, the
spectral sequence of a sentence is denoted as =9
(-lﬁ"’, t= 1,---,T(")). In the EM algorithm, the spectral
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Figure 1 A self-learning speech recognition system

(9));, — ¢ RD .
¥ iy =1,hy | P(is =4
P iy = i) ) = L7 = 4R PG =0

3 1 (o8 =4, B ) P(iy = )
i=1

where N; is the sample size of the ith phone unit, and
N=3N.
i=1

The initial bias A{? is unknown at the first iteration n = 0.
Under %ood recognition conditions, it is reasonable to assume
that I.l.f,' 2 0, i.e. the spectral bias is small. Under severely
mismatched recording conditions, the spectral bias could be rather
large such that starting with il‘()') = 0 could trap the EM into a
local maximum point which is far from the true bias. Taking into
account the unknown distortion izf,') under mismatched recording
conditions, the likelihoods f (z{® i, = i, h‘o’)) are computed
from a uniform distribution, which lead to

P (i = ifel®, B0 = P(iy = i) = 2.
N

The estimate h{?) is derived as
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where 29 and B are the mean spectra of the sentence utterance
and the entire training set, respectively. In Fig. 1, the estimation
of A" is shown as “bias estimation 1.”

Forn > 1, the likelihood functions f (2{?|i; = i, A ) are
computed from the Gaussian densities as in Eq.(1). If the pos-
9 ,1(«))
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terior probabilities P(i'g = ilzs are each approximated

by the decision operation i, (%) = arg max P(ig = i|=$¢), i;S.'))

and the covariance matrices are the unit matrix, the spectral bias
becomes

T
2= 3 (&89 - miggn), )

where p;s(y) is the mean vector of the phone unit labeled for
z,. In order to save computation, only one iteration is carried
out using Eq.(3), which yields the refined bias estimate A{®. In
Fig. 1, the estimation of izg') is shown as the “bias estimation
IL” Acoustic normalization is defined as & = z; — k3%, Vt.

2.2. Phone Model Adaptation

Considering a size-M Gaussian mixture density, the mean
vectors and the covariance matrices of the component densities
are denoted by 8; = (pi,C:), Vi. The mixture weights are

M ,
a; 2 0and Y a; = 1. The likelihood of a spectral vector z,
s=1
M
(the notation ig') is dropped for simplicity) is ), a:f(z+[6:),
i=1

with f(z4|6:) ~ N(ui, C:), Vi. The prior distri‘b=utions of 6;’s
are assumed to be i.i.d., and the mixture weights a;’s are taken as
constant. The prior mean and the prior covariance, ug) and Cf,‘)
are the speaker-independent estimates from a training set with a
sample size n;. Defining the precision matrix r; = C;” ! the joint
distribution of (@, 7;) is taken as a conjugate prior distribution.
Based on the EM algorithm, the Bayesian estimation on the
parameters of the Gaussian mixture density is

v = (1 _ Af-"))pf,") + 2™ L))
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where AS") is the interpolation parameter, g{™ and ¢{(™
are the sample mean and the sample covariance of the adaptation

M
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2.3. Iterative Phone Model Adaptation

Denote the recorded sentences in one session as
Sk, k=1,2,---,K}, and the decoded word strings as
Ag), k=1,2,..-,K}, with k the sequential index on the
sentences. In the sequential adaptation, the phone models that are
used to recognize the jth sentence are adapted from the previous
sentences {Si,83, **+,Sj-1}, and the Viterbi segmentation
is guided by the word strings {Ag”, Agl),---,Ag-l_)l}. In
the iterative phone model adaptation, the word strings that
are generated in the first iteration are denoted as A(’),
and those generated in the nth iteration as Ag"“). When
recognizing the jth sentence, the phone models are adapted
from all the available sentences excluding the jth sentence:
{S1,*+, Sj-1,5j+1,+*+, Sk}, and in the first iteration
the Viterbi segmentation is guided by the word strings
AP A A AR for § = 1,2, KL As
such, the sentences that were uttered before the jth sentence are
segmented according to the newly decoded word strings, and
those after the jth sentence are segmented according to the word
strings generated from the sequential adaptation. To generalize, at
the nth iteration, when adapting the phone models for recognizing
the jth sentence, the Viterbi segmentation is guided by the word
strings {Ag"“), cee ,Ag-_tl), Ag:)l, ceey AS;)}.
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Table 1. Recognition word accuracy using different adaptation methods

baseline acu( PAU-I (acu0) PAS-I (acu() acul acu2 PAU-I(acu2) PAU-II(acu2) PAS-I(acu2)
FCT 74.6 83.0 86.1 86.1 81.1 81.9 84.0 - 843
M-CT 56.5 77.6 85.2 85.7 82.8 84.5 86.9 89.4 87.2
F-RD 442 64.4 72.8 76.3 69.9 70.7 78.2 81.0 80.6
M-RD -0.3 54.5 73.3 78.1 75.1 77.9 83.1 85.2 84.3

3. EXPERIMENTS

The baseline speaker-independent HMM phone models
were trained from 717 sentences by 325 speakers in the TIMIT
database. The cepstrum coefficients of the PLP analysis (8th or-
der), log energy, and their first-order 50-msec temporal regression
coefficients were taken as features. The task vocabulary size was
853, and the grammar perplexity was 105. The test set has one
female (F) and one male (M), each reading 198 sentences, and the
speech were simultaneously recorded using two microphones: a
close-talking microphone (CT) and a dynamic microphone (RD).
Compared to the TIMIT data, the test data were collected under
a higher level of ambient noise (approximately 15 dB higher).
Recognition performances were evaluated for the following cases:

1. speaker-independent continuous speech recognition (baseline)

2. acoustic normalization assuming )15,"’ = 0 and using only the
second bias-estimation block in Fig. 1 (acuQ)

- unsupervised phone model adaptation after acu0 (PAU-I (acu0))

. supervised phone model adaptation after acu0 (PAS-I (acu0))

. acoustic normalization using only ﬁg’) (acul)

. acoustic normalization using I.l.g') (acu2)

. unsupervised phone model adaptation after acu2 (PAU-I(acu2))

. iterative unsupervised phone model adaptation after acu2
(PAU-II(acu2))

- supervised phone model adaptation after acu2 (PAS-I(acu2)).
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The average recognition word accuracies are summarized
in Table 1 for each case. The recognition word accuracy as
a function of the on-line speech data are further illustrated in
Figures 2 and 3 for the two speakers, where (a) and (b) show the
results on the CT data, and (c) and (d) show the results on the
RD data. In (a) and (c) of Figures 2 and 3, the word accuracies
were averaged over the number of sentences indicated on the
horizontal axis (cumulative-averaged results), i.e. if z = 60, the
result was averaged over the past 60 sentences. In (b) and (d) of
the two figures, the word accuracies were averaged within each
20-sentence blocks (interval-averaged results), i.e. for z = 60,
the result was averaged over the sentences 41 through 60. In these
plots, the squares [J mark the baseline results; the diamonds ¢
mark the results from the acu2; the upward triangles A mark the
results from the PAU-I(acu2); the downward triangles <7 mark
the results from the PAU-II(acu2) (one iteration); the circles o
mark the results from the PAS-I(acu2).

Acoustic Normalization The acoustic normalization improved
the recognition accuracy significantly under the mismatched
recording conditions. Under the best baseline condition F-CT
(74.6%), the acu0 yielded the best result; for the rest cases, the
acul yielded better results, and the acu2 improved acul for all the
cases. Especially noticeable is the case M-RD: the baseline result
was below 0% because the speaker put the dynamic microphone
too close to his mouth which caused a significant boost to the low
frequency components of the speech. In this case, the acu0 is

inferior to acul because the posterior labeling probabilities based
on the Gaussian models in Eq.(1) were very unreliable.

Phone Model Adaptation The phone model adaptations further
improved the recognition accuracy: the trend is that the longer the
learning period, the larger the gain of accuracy. If the amount
of adaptation data is very small, the unsupervised sequential
phone model adaptation could degrade the decoding accuracy.
The unsupervised adaptation yielded similar improvements as
the supervised adaptation if the recognition accuracy after the
acoustic normalization is high. The main effect of the iterative
adaptation is on the beginning sentences where the amount of
adaptation data is too small for the sequential adaptation. The
interval-averaged results indicate that the relative effects between
the acoustic normalization and the phone model adaptation
varied considerably depending on the subsets of sentences under
evaluation; whereas the cumulative-averaged results indicate the
general trends for the individual methods.

4. SUMMARY

The proposed self-learning adaptation technique has led to
significant performance improvements for a speaker-independent
continuous speech recognition system. The current work demon-
strates that an accurate estimate of the distortion spectral bias is
important for speech recognition under mismatched conditions.
The proposed two-step bias-estimation method can be considered
as an improvement to previous techniques of the mean-spectrum
subtraction and the unsupervised maximum likelihood estimation.
The unsupervised sequential phone model adaptation improves
the decoding accuracy when the amount of speech data is
sufficient. Iterative phone model adaptation further improves
recognition accuracy when delaying the decoding output is
permissible. Further study will be conducted on speech data
emphasizing the speaker-induced spectral variations such as
strong dialect/foreign accents or peculiar voice characteristics
which account for various recognition conditions.
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Figure 2. Experimental results on the female speaker:
(a) CT, cumulative average; (b) CT, interval average; (c) RD, cumulative average; (d) RD, interval average.
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Figure 3. Experimental results on the male speaker:
(a) CT, cumulative average; (b) CT, interval average; (c) RD, cumulative average; (d) RD, interval average.
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