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ABSTRACT

In this paper, on-line adaptation of semi-continuous (or tied
mixture) hidden Markov model (SCHMM) is studied. A
theoretical formulation of the segmental quasi-Bayes learn-
ing of the mixture coefficients in SCHMM for speech recog-
nition is presented. The practical issues related to the use of
this algorithm for on-line speaker adaptation are addressed.
A pragamatic on-line adaptation approach to combine the
long-term adaptation of the mixture coefficients and the
short-term adaptation of the mean vectors of the Gaussian
mixture components are also proposed. The viability of
these techniques are confirmed in a series of comparative
experiments using a 26-word English alphabet vocabulary.

1. INTRODUCTION

In many speech recognition systems, there usually exists
a performance gap between the recognition accuracies on
training and on testing data. One major reason lies in the
possible mismatch between the underlying acoustic char-
acteristics associated with the training and testing condi-
tions. To bridge this performance gap, one possible solu-
tion is to design a speech recognition system that are ro-
bust to the above types of acoustic mismatch, and this has
been a long standing objective of many researchers over the
past 20 years. Another way to reduce the possible acoustic
mismatch between the training and testing conditions is to
adopt the so called adaptive learning approach. The sce-
nario is like this: starting from a pre-trained (e.g., speaker-
independent) speech recognition system, for a new user (or
a group of users) to use the system for a specific task, a
small number of adaptation data is collected from the user,
and these data are used to construct a speaker adaptive sys-
tem for the speaker in the particular environment for that
specific application. By doing so, the mismatch between
training and testing can generally be reduced. The most
fascinating adaptation scheme with great practical value is
the so called on-line (or incremental, sequential) adaptation
and this scheme makes the recognition system continuously
adapted to the new adaptation data without the require-
ment of the storage of previous training data. It is this
kind of approach that this paper focuses on.

Recently, Bayesian adaptive learning (specifically, Max-
imum a posteriori (MAP) estimation) of Hidden Markov
Model (HMM) parameters has been proposed and adopted
in a number of speech recognition applications [6,1,2,3,4,
5]. It was shown that, for HMM-based speech recognition
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applications, the MAP framework provides an effective way
for combining adaptation data and the prior knowledge,
and then creating a set of adaptive HMMs to cope with
the new acoustic conditions in the test data. The prior
knowledge, which is embodied in a set of seed HMMs as
well as in the assumed distributions of the model parame-
ters being adapted, is made use of to mitigate the effect of
adaptation data shortage to improve the system robustness.
This approach works in a block (or batch) adaptation mode
using a history of all the adaptation data. It finds applica-
tions such as fast adaptation to new speaker(s) and/or new
speaking environments where only a small amount of adap-
tation data is needed. In order to consider the long-term
and short-term adaptations simultaneously, an ideal adap-
tation approach should work in an incremental adaptation
mode. A related work is conducted by Matsuoka and Lee
in [7]. They used the segmental MAP algorithm to conduct
the so called on-line adaptation. Due to its missing mech-
anism of updating the hyperparameters of the prior dis-
tribution incrementally, all the previously seen adaptation
data need to be stored. A full-scale on-line adaptation ap-
proach should be able to update both the hyperparameters
of the prior distribution and the HMM parameters them-
selves simultaneously upon the presentation of the latest
adaptation data. An on-line adaptation approach of this
nature for semi-continuous HMMs (SCHMMs, also called
tied-mixture HMMs) is presented in this paper. It is based
on the segmental quasi-Bayes estimation algorithm for the
mixture coefficients of SCHMM recently developed in [5].

2. SEGMENTAL MAP ESTIMATE

Consider an N-state SCHMM with parameter vector A =
(7, A,8), where 7 is the initial state distribution, A is the
state transition matrix, and 0 is the parameter vector com-
posed of mixture parameters §; = {w.‘k,mk,rk}kﬂ,z'm X
for each state i with the state observation probability den-
sity function (PDF) being a mixture of a common set of
Gaussian PDFs shared by all the HMM states. For state i,
its observation PDF has the form of

K K
pileelbi) = Y wirfu(ze) = Y winN(zelmu,mi), (1)
k=1 k=1
where N(z|mpg,rx) is the k-th normal mixand, with my

being the D-dimensional mean vector and 7 being the
D x D precision (inverse covariance) matrix. FEach state
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observation density differs from another by its correspond-
mg mixture coefficients, wix, which satisfy the constraint
Zk Wik = 1.

For an observation sequence x = (z1,%2,---,zT), let
s = (81, 82,*--,37) be the unobserved associated state se-
quence. By maximizing the joint posterior density of the
parameters A and state sequence 8, p(}, s|x), one has

A = argmax max p(}, s|x) = argmax max p(x, s|A)g(1),

(2)
where g(\) is the prior density for parameter A and Xis
called the segmental MAP estimate of A [6]. It can be shown
that by starting with any estimate A("), alternate maxi-
mization over 8 and A gives a sequence of estimates with
non-decreasing values of p(}, 8|x), i.e. p(AU+1) g1+ |x) >
p(A®,8(V|x) with

s = argmsaxp(x,slz\(')), (3)

(4)

The most likely state sequence s(") is decoded by means of
the Viterbi algorithm. The maximization over A in equation
(4) is usually accomplished with an EM algorithm which
itself is an iterative algorithm and very time consuming {6,
1, 2, 3, 4]. We have proposed previously [5] and summarize
in this paper an approximate but efficient solution which is
called the quasi-Bayes method which estimates the mixture
coefficients alone.

A = argmgxp(x,S")I/\)g(A)-

3. SEGMENTAL QUASI-BAYES ESTIMATE

By applying the Viterbi algorithm to the training data, sets
of observations (e.g., z1, %2, -+, 1) associated with each
HMM state can be identified. Given the sequence of obser-
vations, the updating formula for {wix} corresponding to
the maximization in equation (4) can be derived by solving
the following quasi-Bayes estimation problem for a general
finite mixture distribution.

Conditional on w; = (wi1, wiz, -+, wix) and density
functions f1, fa2, ---, fx, each z, is assumed independently
observed with the PDF as shown in equation (1). Assuming
that the prior density for w; has the form of a Dirichlet
density

WO

’

g(wi) = D(wilvy,--

-,u(o)) I8 Hw

where u(o) >0, k=1,---,K, and “ o« ” denotes propor-
tlona.hty After observmg z1, the posterior density of w;
becomes

(%)

(0)

plwilzs) = Zp'k(zx)D(w-IV“’Hn, -, YR +8kx), (6)
k=1

where ©
pir(z) = —rtm )i (7)

Y i fm(z1)e)
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and §;; is the Kronecker delta function &;; = §(i—j). Many
well-known approximate Bayesian learning procedures to
solve this problem arise from approximating the RHS of
equation (6) by

y U, Sg{) + AIK )’

D(wilv + Ay, (8)

where the A;;’s take values according to a specified method.
In our proposed quasi-Bayes procedure, it is suggested that
Aix be replaced by pik(z1) shown in equation (7), and
therefore

plwilz1) =

e

D(“"I”le)! VK

plwilz1) =

)s )
o

where v;;, (0) + pix(z1). Then, subsequent updating
takes place entuely within the Dirichlet family of distribu-
tions, viz., p(wi|z1, %2, ", Zn) is Dirichlet with parameters

v = w5 + pin(za) (10)

where v(" ) are parameters of p(wi|z1, T2,y Tn-1), and
fk Tn V(n -1)

pik(zn) = (zn) (1)

fm( n)y(n—l)

Em:l

The (quasi-) posterior mean for wi, after observing z, z2,
-, T is given by

v

K
m=1

oM
Wik

(12)

ol

and the mode of the approximate posterior density is

(") -1
Zm—l(y(n) )

Both equations (12) and (13) can serve as the updating
formula for the mixture coefficients in the segmental quasi-
Bayes learning for SCHMMs. Equation (10) is used as the
updating formula of the hyperparameters.

Note that apart from its computational efficiency, an-
other advantage of the segmental quasi-Bayes method over
the segmental MAP one is due to its sequential nature in
updating both the hyperparameters of the prior distribu-
tion and the SCHMM parameters. This makes the so-called
on-line adaptation of the mixture coefficients very natural
under the framework of the quasi-Bayes method. We will
compare the so-called batch adaptation scheme and the on-
line adaptation scheme in the next Section using a series of
speaker adaptation experiments to substantiate the viabil-
ity of the proposed techniques.

oy =

(13)

4. SPEAKER ADAPTATION EXPERIMENTS

4.1. Experimental Setup

To study the practical issues related to the use of the seg-
mental quasi-Bayes algorithm in estimating SCHMM pa-
rameters for a speaker adaptation application, the 26-letters
of the English alphabet are chosen to form the vocabulary
for all experiments. Two severely mismatched databases are
used for evaluating the adaptation algorithms. For speaker



Table 1: Performance comparison (% correct) of several
segmental adaptation schemes for the mixture coefficients
of SCHMMs only (SI recognition rate: 47.8%)

Tokens | SEG-ML | SEG-MAP | QB-BL | QB-OL
1 56.3 61.5 62.0 62.0
2 62.5 65.1 65.0 65.4
3 65.9 67.2 66.8 67.4
4 67.0 68.0 67.8 68.2
5 68.4 69.1 69.0 69.1
6 68.3 68.9 69.0 69.3
7 68.6 69.4 69.3 69.5
8 69.4 69.7 70.0 69.9
9 70.3 70.5 70.1 70.1
10 70.7 70.8 70.4 70.6

independent (SI) training and prior density estimation, the
OGI ISOLET database produced by 150 speakers (75 fe-
males and 75 males) is used. Each speaker utters each of
the letters twice. For speaker dependent (SD) or adaptive
(SA) training and testing, the TI46 isolated word corpus
produced by 12 speakers (8 females and 4 males) is used.
Each person utters each of the letters 26 times, 10 of them
used for SD/SA training and the remaining 16 tokens for
testing. Readers are referred to [3, 4, 5] for further details.

4.2. On-line Adaptation of the Mixture Coefficients

As is well-known, mixture coefficients are very important
parameters in modeling speech units in SCHMM. To ex-
amine the viability and effect of the segmental quasi-Bayes
algorithm presented in this paper for on-line adapting the
mixture coefficients of SCHMM only, a series of compar-
ative experiments are conducted. The first experiment is
to recognize the English alphabet subset of TI46 with the
SI system trained with speech tokens from OGI ISOLET.
The average recognition rate is 47.8%. For simplicity, in
SA/SD training, Gaussian mixture component PDFs and
the transition probabilities are fixed to that of the SI sys-
tem. In SA training, the hyperparameters of the prior dis-
tribution of the mixture coefficients are estimated with the
ad hoc method discussed in [3]. The remaining experimen-
tal setups are as follows: “SEG-ML” stands for SD segmen-
tal ML (k-means) training of the mixture coefficients and
“SEG-MAP” corresponds to its MAP counterpart. “QB-
BL” stands for SA segmental quasi-Bayes block adaptation
of the mixture coefficients, and “QB-OL” refers to its on-
line adaptation counterpart. The average word recognition
rates for the 12 speakers are summarized in Table 1. The
rows in Table 1 correspond to the numbers of training to-
kens used for each SD and SA cases.

The first observation from Table 1 is that the SD recog-
nition rate of only one training token is better than that
of the SI system and this fact is a good indication of the
serious mismatch between the two corpora. A second obser-
vation is that when using the same amount of training data,
SA training outperforms SD training in most of the cases
tested. This implies that SA training utilizes the adaptation
data more effectively than SD training, especially in cases of
insufficient training data. As expected, the SA performance
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quickly becomes equivalent to the SD performance when
the number of adaptive training tokens increases. A third
observation is that the recognizer performance with the seg-
mental quasi-Bayes method is not much different from that
with the segmental MAP method, and this fact also shows
the viability of the quasi-Bayes approximation in maximiz-
ing the RHS of equation (4). By using the quasi-Bayes
learning framework, one can update both the hyperparam-
eters of the prior distribution and the mixture coefficients
simultaneously upon the presentation of the current adap-
tation data. In this way, with each adaptation utterance
presented, its effect upon further adaptation is accumulated
into the prior distribution. Thus previous adaptation data
need not be stored explicitly. The prior distribution reflects
all the prior knowledge about the mixture coefficients. A
true on-line adaptation of the mixture coefficients can thus
be conducted. As a fourth observation, by comparing the
results of “QB-OL” and that of “QB-BL”, it is noticed that
the on-line adaptation results are similar to the one based
on the batch adaptation scheme. This confirms the effec-
tiveness of the on-line adaptation scheme of the mixture
coefficients. In the next subsection, a pragmatic procedure
which combines the quasi-Bayes adaptation of mixture co-
efficients with an adaptation scheme of the component den-
sity will be experimentally tested and reported.

4.3. On-line Adaptation of the Mixture Coeflicients
and the Mean Vectors

For an SCHMM based recognizer, apart from the mixture
coefficients, the adaptation of the mean vectors of the Gaus-
sian mixture components is also very important [4]. How-
ever, the previously proposed algorithm can only be theo-
retically justified in the case of fixed mixture components.
On the other hand, it has been shown in [4] that the mean
vectors of the common Gaussian densities in SCHMM can
be rapidly and effectively estimated even with a limited
amount of training data by the conventional speaker depen-
dent training. Thus a pragmatic procedure which combines
the quasi-Bayes adaptation of the mixture coefficients and
the adaptation of the mean vectors can be as follows:

0. Take SI trained models as initial models. The ini-
tial hyperparameters of the mixture coefficients are
computed.

Obtain new adaptation token(s) and push it {them)
into the “history data buffer”.

Conduct segmental quasi-Bayes estimation of the mix-
ture coefficients.

Fix the other parameters and SD-train the mean vec-
tors of the mixture components with the adaptation
data in the “history data buffer”.

Repeat Steps 2 and 3 several times, and then update
the hyperparameters of the prior distributions of the
mixture coeflicients.

5. Go to Step 1.

To examine the effects of this on-line adaptation pro-
cedure, a series of comparative experiments are conducted.
Once again, for simplicity, the transition probabilities and
the covariance matrices of the Gaussian mixture compo-
nents are fixed to that of the SI system. In an on-line
SD training of mean vectors, different block sizes of the



Table 2: Performance comparison (% correct) of several
adaptation schemes for the mixture coefficients and the
mean vectors of SCHMMs (SI recognition rate: 47.8%)

Tokens | SEG-ML | OL-1 | OL-2 | OL-3
1 63.6 66.8 66.8 66.8
2 70.4 71.5 72.4 72.4
3 74.2 72.3 73.2 73.9
4 76.2 73.7 73.9 75.0
5 77.3 73.7 74.2 75.3
6 76.1 73.6 74.9 75.6
7 77.1 75.9 76.1 76.2
8 76.9 76.0 76.6 76.0
9 7.7 76.4 76.8 77.0
10 78.5 77.1 77.2 77.4

“history data buffer” is examined. In the particular ex-
perimental setup here, the cases with buffer size of 1, 2,
3 token(s) per letter have been tried. The related exper-
imental results (the average word recognition rates for 12
speakers) are summarized in Table 2. The rows in Table 2
correspond to the numbers of training tokens used for each
SD and SA cases. “SEG-ML” stands for SD “segmental
ML (k-means)” training of the mixture coefficients and the
mean vectors. “OL-1” corresponds to on-line adaptation of
the mixture coefficients and the mean vectors with the his-
tory data buffer size being 1. Similarly, “OL-2” and “OL-3”
refer to respectively the cases with buffer sizes of 2 and 3.

Once again, from Table 2, it is observed that the rec-
ognizer performance with on-line adaptation outperforms
that with SD training when the SD training data is insuf-
ficient (1 and 2 tokens). The SD performance improves
as the number of speaker specific training tokens increases,
and the on-line adaptation scheme can follow this increas-
ing trend, although its absolute recognition rate is inferior
to the SD one when relatively more SD training tokens (in
particular here more than 3 tokens) are available. As for
the effects of the “history data buffer” size, it is observed
that the larger the buffer size, the better the on-line adap-
tation performance. On the other hand, larger buffer size
also means more storage is required. From the practical
point of view, there will be a compromise in real applica-
tions. The on-line adaptation of the mixture coefficients
can be viewed as a long-term adaptation process to cope
with long-term variations. All the historical knowledge is
represented by the prior distributions and is updated in-
crementally. The effect of this long-term prior knowledge
on the adaptation results can be easily controlled through
some forgetting mechanism. This mechanism can be imple-
mented by setting up some registers to store the most recent
contributions from the adaptation data history. When it
becomes time to “forget” about the long-term prior knowl-
edge, the hyperparameters of the prior distributions can be
recomputed from the stored recent contributions. The on-
line SD training of mean vectors can be looked upon as a
short-term (or fast) adaptation process to track the latest
variations. This kind of on-line adaptation framework will
find applications in real world adaptive speech recognition
systems.
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5. SUMMARY

In this paper, in order to cope with the acoustic mismatch
problem between the training and testing conditions, the is-
sues of on-line adaptation of a SGHMM-based speech recog-
nition system are addressed. A theoretical formulation of
the segmental quasi-Bayes learning of the mixture coeffi-
cients in SCHMM for speech recognition is presented. The
practical issues related to the use of this algorithm in on-line
adapting the mixture coefficients of SCHMM for speaker
adaptation are studied. A pragamatic on-line adaptation
approach to combine the long-term adaptation of the mix-
ture coefficients and the short-term adaptation of the mean
vectors of the Gaussian mixture components are also pro-
posed. The viability of these techniques are confirmed in
a series of comparative experiments using a 26-word En-
glish alphabet vocabulary. The kind of on-line adaptation
approach studied in this paper is a topic of interest both
in theory and in practice. Further research is needed to
develop the on-line adaptation method which can update
incrementally the hyperparameters of both the mixture co-
efficients and the mean vectors as well as the covariance
matrices.
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