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ABSTRACT

Speaker adaptation has received a considerable amount of
attention in recent years. Most of the previous work focused
on techniques which require a certain amount of speech to be
collected from the target speaker. This paper presents two
speaker adaptation methods, including a feature normalization
and a HMM parameter adaptation, developed to improve a
speaker-independent HMM-based speech recognition system.
The proposed adaptation algorithms are text-independent and
do not require target speech collection. By applying the
feature normalization, the target speech is normalized to reduce
the acoustic inter-speaker and environmental variability. By
applying the HMM parameter adaptation, the recognition
system parameters are dynamically modified to model the
target speech. We carried out recognition experiments to
assess the performance, using two different speaker-
independent recognizers as the baseline systems: a continuous
digit recognizer and a keyword recognition system. The results
show that when both adaptation techniques are combined, the
word error of the digit recognizer using the TI Connected Digit
corpus is reduced by about 30% and the detection error of a
keyword recognition system using the Road Rally corpora is
reduced by about 40%.

1. INTRODUCTION

Statistical modeling approaches such as hidden Markov
Models (HMMs) have been widely applied to develop speech
recognition systems for practical applications. One of the
major challenges in developing a speech recognition system
with high accuracy is the vast acoustic variability among
different speakers. To address this problem, in a speaker-
dependent recognition system, speaker-specific statistical
patterns are typically developed to directly model the
acoustical characteristics of the target speaker. Since the
target speaker's acoustic characteristics are taken into account,
the resulting recognition performance is typically high. In a
speaker-independent recognition system, statistical models are
derived using the speech collected from a certain number of
training speakers. The recognition performance may degrade
significantly when the acoustic characteristics of the target
speech is very different from that of the training speech.

Speaker adaptation methods [1-8] were also developed to deal
with the inter-speaker acoustic variability. The work presented
in [1,2] focused on transforming well-trained discrete HMMs
derived from a prototype speaker, to model the speech from the
target speaker, by using spectral mappings. Methods
described in [5,6] applied a Bayesian technique to adapt the
continuous density HMMs to model the target speech.
Unsupervised speaker adaptation methods based on
hierarchical spectral clustering [3], or linear spectral
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normalization [4,8] were also proposed to model the inter-
speaker variability. However, most of the previous adaptation
algorithms require the collection of a certain amount of target
speech, which is sometimes undesirable or impractical for
certain types of applications.

This paper presents two speaker adaptation algorithms which
are text-independent and do not require previously collected
target speech. Both methods were developed to improve the
performance of a HMM-based speaker-independent recognition
system. The first proposed method is a feature normalization
procedure in which we model the inter-speaker variability as a
linear transformation in the spectral domain. The linear
transformation is mapped to a spectral shift vector in the
logarithmic spectral (cepstral) domain. Several techniques
were investigated to measure the spectral bias vector. The
second adaptation method is a HMM parameter adaptation
procedure which takes the decoded word label and the
corresponding speech segments and derives a probabilistic
score index which gives an indication about the correctness of
the label and the segmentation. If the probabilistic score
index is above a pre-estimated threshold, the decoded speech
segment is used to re-estimate the corresponding HMMs to
improve the probability of generating the segment given by
the models.

To assess the performance of the proposed methods, we carried
out recognition experiments using two speaker-independent
recognition systems as the baseline systems: a continuous
digit recognition system and a keyword recognition system
[9,10]. For the continuous digit recognition, experiments
were conducted using the TI Connected Digit Corpus. The
results indicate that the average word error rate of the baseline
system is reduced by about 30% when using a combination of
both methods. For the keyword recognition, the Road Rally
Corpora were used and the results show that the detection error
rate of the baseline system is reduced by about 40% when
combining both proposed methods.

The remainder of the paper is organized as follows. The feature
normalization method and the techniques used to derive the
normalization are described in Section 2. The HMM adaptation
algorithm and the derivation of the probabilistic score index
are illustrated in Section 3. Section 4 describes the
recognition experiments and presents the results.

2 FEATURE NORMALIZATION

In a speaker-independent recognition system, it is hoped that
the statistical models will assimilate sources of speaker
variability and environmental variability so the remaining
system is a robust characterization of the speech units.
However, it is known that there are sources of variability
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including inter-speaker variability and environmental
variability. One approach to deal with the sources of
variability is to assume that the variability can be represented
by a linear transformation in the spectral domain. In the
logarithmic spectral domain, this variability is mapped to a
fixed shift (spectral bias). Several techniques were
investigated to model the cepstral bias vector.

Cepstral-Me N izatio!

A cepstral-mean based normalization method which is similar
to the method presented in [11,12] used for channel or
environment normalization, was developed to compensate the
bias vector in the cepstral feature domain for the target
speaker. The is a simple and direct deconvolution method,
where the bias vector is modeled as the difference between the
average cepstrum of the training speech and the average
cepstrum of the target speech. This spectral bias vector is
separately estimated for each target sentence. The derived bias
vector is then used to normalize the target speech before
recognition decoding.

Model-Based Normalizati

The second normalization approach is a model-based approach,
and is motivated by the work presented in [4,8]. In this
approach, the speech from a standard speaker is modeled using
a set of Gaussian density models u(#;,0;)1sisM. For
simplicity, we assume all the covariance matrices are diagonal
matrices. Given by a sequence of labeled cepstral feature
vectors {%;,1<i<T} from a given target speaker g, the cepstral

shift vector Fq characterizing the speaker q can be estimated to
maximize the likelihood function:

L= MPGElm. .. .5 )P, G IF, 1
PG, 5, B) PR, 5, [F) M

where ¢; is the label and P(ﬁ,-,'d'ilﬁq) is assumed as uniform.

By differentiating the log likelihood in (1) with respect to the
unknown spectral bias vector and setting to zero, we obtain

B =
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In the current procedure, we use the training speech to derive
the Gaussian models for the standard speaker. For each
training sentence, we first label the corresponding observation
sequence using the Gaussian models of the standard speaker.
We then estimate the spectral bias vector using (2) and remove
the spectral shift vector from that sentence. The normalized
training speech is used to derive the HMM parameters for
recognition. A similar normalization procedure is performed
on the target speech before the recognition decoding.

From the recognition experiments, we observed that the
performance improvement caused by the cepstral-mean-based
approach is similar to that of the model-base normalization.
However, the computational complexity of the model-based
technique is much higher than the other. Therefore, we select
the cepstral-mean based normalization as the normalization
method.

3. HMM PARAMETER ADAPTATION

In a typical speaker-independent HMM-based recognition
system, the HMM parameters are derived to model the training
speech and the parameters remain unchanged when recognizing
target speech. The recognition performance may drop
significantly when the acoustic characteristics of the target
speech does not match that of the training speech. To improve
the recognition performance, we developed a dynamic HMM
parameter adaptation approach, which attempts to adjust the
HMM parameters to model the acoustic characteristics of the
target speech.

Speech | Baseline Dynamic Recognized
Recognition |—3» HMM |—> Speech
System Adaptation Units

Figure 1. Dynamic HMM parameter adaptation paradigm.

Figure 1 shows the proposed recognition procedure which
incorporates the HMM adaptation as part of the on-line
recognition process following the regular recognition
decoding procedure. A new target speaker starts with the
baseline HMM system which was derived from the training
speech. Following the regular recognition decoding process,
the target speech sentence labeled by the recognition decoder
is used to modify the baseline HMM parameters using the
dynamic HMM parameter adaptation method. The modified
HMMs replace the baseline HMMs and are used to recognize
the next speech sentence from the same target speaker. This
iterative recognition-adaptation process continues uatil the
end of the target speaker turn. The HMM parameters of the
recognition system are therefore dynamically updated during
recognition.

Exit Adaptation
%0 New
Probabilistid PSI | ;- | Yes|Re-estimatiog HMMs
—{Score Index > and
L PSI < Th .
Derivation Interpolation;

A

Figure 2. HMM parameter adaptation block diagram.

Figure 2 shows the block diagram of the HMM parameter
adaptation (HPA) algorithm. As shown in Figure 2, the HPA
algorithm contains three steps. In the first step, it derives a
probabilistic score index (PSI) for each word which is decoded
in the preceding baseline recognition procedure. The derived
PSI provides a confidence measure which indicates how well
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the segment matches the model. In the second step, each
derived PSI is compared with an empirically derived threshold.
If the derived PSI is above the threshold, we go to the third
step to re-estimates the HMMs associated with the word label.
When the calculated PSI is lower than the threshold, no model
adaptation is performed because the label of the speech might
not be correct. Below we describe the definition and the
derivation of the probabilistic score index.

Probabilistic Score Ind

Given a hypothesized word label, the corresponding speech
segment O,.0r is mapped to every word model

{HMM;,15i< N}, to calculate a maximum likelihood score :
ml = max{(LS; = Prob(0, ...Op | HMM;), i=1,..,N}, 3)

where LS; is the likelihood score associated with the i-rh
model, and N is the total number of word models used. In
addition, we compute a differential maximum likelihood
measure:

dmi= ml-ml’, @

where ml’ is the second largest likelihood score. The
likelihood scores defined in (3) and (4) are similar to the a-
posteriori measures used in the keyword recognition system
described in [9,10].

Since the proposed HMM adaptation technique uses the decoded
word label and the corresponding speech segment as the
labeled target speech to re-estimate the associated HMM
parameters, the correctness of the decoded word label and the
speech segments are of great importance. To derive a reliable
measure of the correctness of the label and the segment, the
maximum likelihood score and the differential likelihood score
for each word label i are modeled as random variables ML(i)
and DML(i) with discrete probability density functions (pdfs)
denoted by Py i, Ppuyys for all i. In addition, the durations

of the decoded speech segments for all word labels i are also
modeled as random variables with pdf Pp,.

Given a word label £k from the baseline recognition decoder,
and the corresponding maximum likelihood score ml, we can
calculate the probability of producing the score ml for word
label ¥ using the corresponding pdf:

PS) = Py 3 (md), ®)

where PS; can be interpreted as a confidence factor which

measures how well the decoded speech segment matches the
corresponding HMM from the a-posteriori maximum
likelihood score point of view. Similarly, we can calculate the
confidence factor using the probability density function for the
differential likelihood or the duration score. In the proposed
method, we calculate the individual confidence score and derive
a final probabilistic score index which is defined as a weighted
linear combination of the three individual confidence
measures:

PSI=wy - Pygy (ml) + W - Prygy 4y (dmd) + w3 - Py (d),  (6)

where the weighting factors wj,w,,w; are used to adjust the
importance of the individual probabilistic score.
Reestimati £ HMM

In the HMM parameter adaptation procedure, we focus on
modifying the pdfs associated with HMMs. Given the decoded

word label, the segmented observation sequence 5=01..0T,

- and the current model parameters A4 =(i,7,=§-), our goal is to

obtain a new set of pdfs associated with the decoded word label,
to maximize the likelihood P(O]1).

We use the Baum-Welch re-estimation procedure [13] to derive
the maximum likelihood estimate of the new pdfs E’(l) for all
symbols V; and all associated states s in word model k. We

then interpolate the newly estimated E’(l) with the current
pdfs by (J) to form the final pdfs, for all associated s and all I:

5y(=bs(D+PSI-G- B (D) 0]

where factor G is used to adjust the contribution of the new
estimate.

4. RECOGNITION EXPERIMENTS

In the recognition experiments, we applied the proposed
adaptation methods to two separate speaker-independent
recognition systems: a continuous digit recognition system
and a keyword recognition system. In both experiments, we
used 17 features (8 cepstral, 8 differential cepstral, and 1
differential power) computed every 16 msec., using a 32 msec.
analysis window.

Conti Digit R "

We carried out experiments using the standard speaker-
independent TI Connected Digit corpus [14]. The corpus
consists of speech sentences with 1,2,3,4,5 and 7 digit
strings, spoken by the speakers representing 22 dialectical
regions. We used 2640 sentences from 110 speakers for
training, and 2712 sentences from an independent set of 113
speakers for testing. All speech sentences were downsampled
from 20Khz to 8kHz. Word-based HMMs with discrete pdfs
were used to model each digit individually.

We used the word error rate defined as the sum of substitution
error, deletion error, and insertion error, as the performance
measure. Table 1 shows the results of applying the baseline
(no adaptation), baseline with feature normalization algorithm
(FNA), baseline with HMM parameter adaptation (HPA), and
baseline with a combination of both schemes. As shown in
table 1, the FNA method reduces the baseline word error by
about 7% and the HPA method reduces baseline word error by
about 26%. The combination of the two proposed schemes
decreases the baseline error by about 31% .
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word error rate (%) |
Baseline 4.5
FNA + Baseline 4.2
HPA + Baseline 3.3
FNA+HPA +Baseline 3.1

Table 1. Performance comparison of a continuous digit
recognizer with and without adaptation techniques.

K I -

We conducted experiments using the Road Rally corpora with
20 pre-defined keywords. The Road Rally Corpora contain two
sub-corpora, "Stonehenge” and "Waterloo™. The Stonehenge
speech was collected using high-quality microphones and a
telephone-simulator filter, while the Waterloo speech was
collected using actual telephone lines. We manually
segmented all conversations and read passages to form natural
sentences. The training speech contains sentences from 56
Waterloo read passages and 18 Stonehenge conversations. The
test speech includes sentences from an independent set of 18
Stonehenge conversations. We applied the -proposed
adaptation techniques to a baseline keyword recognition which
is similar to the one described [9,10], to assess the
performance. Word-based HMMs with discrete pdfs were used
to model both keyword and non-keyword elements.

We used the detection error rate, rejection rate, and the false
alarm per keyword per hour as performance measures. In Table
2, we present the performance resulting from applying the
baseline system, baseline with the FNA method, baseline with
the HPA method, and baseline with both adaptation techniques.
Table 2 shows that the application of the FNA method reduces
not only 21% of the baseline detection error, but also reduces
the rejection rate by about 59%. By using the HPA algorithm
only, the baseline detection error is reduced by 27% and the
rejection error is reduced by 60%. By combining the two
methods, the baseline detection error is reduced by 40% and the
rejection error is reduced by 62%.

detection false alarm | rejection
error rate per kw rate (%)
. (%) per hour
Baseline 27.0 16.4 7.5
FNA + Baseline 21.3 17.1 3.1
HPA + Baseline 19.8 16.5 3.0
FNA+HPA+Baseline 16.0 16.8 2.8

“Table 2. Performance comparison of a keyword recognition
system with and without adaptation techniques.

The above results show that the HPA method offers similar
performance improvement in both cases. However, with the
FNA method, we observe higher performance improvement for
the keyword recognition experiment than for the continuous
digit recognition experiment. This performance difference
may be related to the fact that the Road Rally test speech and
the majority of the training speech were recorded in very
different acoustic environments. The FNA method appears to
be particularly valuable in cases where such environmental
differences exist.

5. CONCLUSION

We presented two speaker adaptation algorithms developed to
improve the recognition performance of a speaker-independent
recognition system. The proposed speaker adaptation
algorithms, including a feature normalization and a HMM
parameter adaptation, are text-independent and do not require
previously collected target speech. By using the feature
normalization, the target speech is normalized to reduce the
acoustic inter-speaker and environmental variability. By
applying the HMM parameter adaptation, the recognition
system parameters are dynamically modified to model the
target speech. Experiments on two speech corpora show that
the average word error rate and detection error rate are reduced
by 30-40% when both techniques are combined.

References

[1]M. W. Feng, F. Kubala, R. Schwartz, and J. Makhoul,
"Improved speaker adaptation using text-dependent spectral
mappings,” Proc. ICASSP'88, April 1988, pp. 131-134,
[2IM. W. Feng, R. Schwartz, F. Kubala, and J. Makhoul,
"Iterative normalization for speaker-adaptive training in
continuous speech recognition," Proc. ICASSP'89, May 1989,
pp. 612-615.

(3]S. Furui, "Unsupervised speaker adaptation based on
hierarchical spectral clustering,” IEEE Trans. on Acoust.,
Speech and Signal Proc., Vol.37, No.12, pp.1923-1930, Dec.
1989.

[4]S. Cox and J. Bridle, "Unsupervised speaker adaptation by
probabilistic spectrum fitting", Proc. ICASSP’'89, May 1989,
pp. 294-297.

[51C. H. Lee and C. H. Lin, and B. H. Juang, "A study on
speaker adaptation of the parameters of the continuous density
hidden Markov models,” IEEE Trans. on Signal Processing,
Vol.39, No.4, pp.806-814, April 1991.

[6]B. Necioglu, M. Ostendorf, J. Rohlicek, "A Bayesian
approach to speaker adaptation for the stochastic segment
model,” Proc. ICASSP'92, March 1992, pp. 437-440.

[71X. Huang and K. Lee, "On speaker-independent, speaker-
dependent, and speaker-adaptive speech recognition," Proc.
ICASSP'91, May 1991, pp. 877-880.

[8]Y. Zhao, "A new speaker adaptation technique using very
short calibration speech,” Proc. ICASSP'93, April 1993,
pp.562-565.

[9IM. W. Feng and B. Mazor, "Continuous word spotting for
applications in telecommunications”, Proc. of International
Conference on Spoken Language Processing (ICSLP) 1992,
Oct. 1992, pp. 21-24.

[10]B. Mazor and M. W. Feng, "Improved a-posteriori
processing for keyword spotting," Proc. Eurospeech’93, Nov.
1993, pp. 2231-2234.

[11]A. Acero and R. M. Stern, "Environmental robustness in
automatic speech recognition," Proc. ICASSP'90, April 1990,
pp. 849-852.

[12]S. Lerner and B. Mazor, "Telephone channel normalization
for automatic speech recognition," Proc. ICASSP'92, March
1992, pp. 261-264.

[13]L. E. Baum and T. Petrie, "Statistical inference for
probabilistic functions of finite state Markov chains,” Ann.
Math. Stat., vol. 37, pp. 1554-1563, 1966.

[14]R. Leonard, "A database for speaker-independent digit
recognition,” Proc. ICASSP'84, March 1984, pp. 42.11.1-4.

707



