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ABSTRACT

A technique for adapting speaker-independent speech
recognition models to the voice of a new speaker is
presented. The technique is capable of estimating
adapted parameters for all the speech models when
only a small subset of the recognition vocabulary is
spoken by the new speaker. Whereas previous meth-
ods have often assumed a transformation between the
speaker-independent models and the adapted models,
this technique models the relationship between differ-
ent speech units using linear regression. The regression
models are built off-line using the training-set data. At
recognition-time, the speech models are adapted using
the regression models and the new speaker’s data, a
procedure which is computationally cheap. Experimen-
tal results show a halving of the recognition error-rate
when only about 8% of the vocabulary is given as en-
rollment data, and when half the vocabulary is given,
a reduction in the error-rate of 78%.

1. INTRODUCTION

Although advances in speech recognition techniques
have enabled good performance to be obtained from
speaker-independent (SI) speech recognition systems,
a speaker-dependent (SD) system which has been ad-
equately trained on the voice of the user will still give
superior performance. However, in many situations it
is impossible to obtain sufficient data (or perhaps any
data) from the speaker before he uses the systemn and
in such cases, it is necessary to use SI models.

In between these two extremes, perhaps as more
data becomes available from a speaker in an on-line
system, it is natural to attempt to adapt the SI models
to work better on the new speaker’s voice, a technique
which has become to be known as “speaker adapta-
tion”. Most speaker adaptation schemes (e.g. [4]) re-
quire the new speaker to provide at least one example
of each speech unit for full adaptation of the vocab-
ulary. If examples of any of the units are not avail-
able, these units are not adapted. This may not be
problematical if the vocabulary is fairly small but for
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large vocabulary systems, it means that the time taken
for full adaptation will be long. Here, we present a
method for adapting all sound classes in the vocabu-
lary when only a subset of the vocabulary is available
from a new speaker. The speech models are assumed
to be continuous-density HMMs and the mean vectors
of these models are adapted.

2. ADAPTATION PHILOSOPHY

In previous work ([1], [2]), we attempted to globally
adapt SI models to a new speaker’s voice by using a
model of the form

si=p;+6 (1)

where g, is the ¢’th class mean, s; is the speaker’s re-
alisation of this class and 6 is a “bias” vector char-
acteristic of the speaker. A more sophisticated model
was also studied in which the speaker’s realisation of a
sound-class was modelled as a linear transformation of
the mean:

i = Ap; + 6 2
where A is a D x D matrix (D = vector dimension-
ality). In both cases, the transformations were global
i.e. § and A were used to transform all the models.
However, the performance improvements obtained us-
ing these techniques were disappointing [2]. It was con-
cluded that although the models of [1] and [2] have
the advantage of simplicity and conciseness, their core
assumption that a given speaker’s speech can be mod-
elled as a single invariant transformation applied to the
‘prototype’ speech models is not powerful enough. The
techniques could be extended to use sets of neighbour-
ing sound-units with a different bias term or transfor-
mation for each set [7]. As more sets are defined, the
prediction accuracy within a given set increases but
the model’s predictive power lessens, since a given in-
put sound can predict only the sounds within its own
set. In the limit, the number of sets equals the number
of sounds and an input sound is used only for predict-
ing its own class i.e. the model ceases to be predictive
of unheard classes.



A shortcoming of the above approach is that it takes
no account of the rich prior information (available in
the training-data) about relationships between sounds.
We have attempted to exploit this information as fol-
lows. Ignore for present purposes the temporal aspect
of a speech sound and the desirability of representing it
in a multi-dimensional space, and assume that a sound
from a speaker can be represented by a scalar value
on a certain axis. Other sounds made by the same
speaker can then be represented by positions on or-
thogonal axes. Hence in this representation, if there
are V sound-classes in the vocabulary, a speaker is a
point in a V dimensional space. When several speak-
ers are represented in this space, our assumption is that
the resulting distribution of data points has some kind
of structure and hence that we can assume transforma-
tions between sets of sounds. Once these transforma-
tion parameters are known, if we are given the values
of a set of labelled sounds from a new speaker, values
for any of the unheard sounds can be estimated.

There are several advantages to this approach over
an approach in which a transformation between an SI
mode] and an adapted model is assumed:

1. In principle, models can be built between any sets
of sounds we choose and at recognition time, the
ones which are most useful for exploiting the data
presented by the new speaker may be used.

. In general, there will be plenty of data to es-
timate the model parameters rather than the
sparse amount of data provided by a new speaker.
Hence we can assume more complex models and
obtain good estimates of model parameters.

. Model parameter estimation can be done off-line
so that the computation required at recognition
time is small.

3. MODEL DETAILS

For present purposes, we used the simplest assumption
possible about the structure of the data in the ‘speaker-
space’, which is that it is linear. Hence multiple linear
regression can be used to model the data structure i.e
we can use a model of the form:

Yi =80+ X8 +ex, 3)
where Y, is the set of S realisations of sound k from
the speakers, X is an S x (V — 1) matrix of realisations
of all sounds except sound k, B is a set of (V — 1)
regression coefficients and ey is an error-vector. Given
a subset of M of the vocabulary sounds, we can form
a regression model of any sound k not in this subset
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using the V x V' covariance matrix of the speaker-space
(6]. However, to pre-compute each of these regressions
would be prohibitive; in practice, they would have to
be computed on-line once the set of M sounds available
from the new speaker was known. To avoid this on-line
computation, we use simple linear regression pairwise
between all the sound-classes and construct a set of
models of the form:

Yi=fo+bBiX;+er £k (4)
It will be seen later that the experifnental paradigm we
used enabled a fairly modest amount of storage for the
pre-computed regression coefficients.

3.1. Model construction and data

Experiments were carried out on a database of isolated
utterances provided by British Telecom [6]. Recog-
nition of isolated utterances was used because it is
the simplest practical speech recognition problem and
the techniques developed for its application can be ex-
tended to more sophisticated systems.

In section 2, we assumed that examples of sound
classes can be represented as scalars. To deal with se-
quences of vectors which represent isolated utterances,
we first train speaker-independent HMMs for each class
in the vocabulary and then use the HMM of class i and
the Viterbi algorithm to segment the training-set ut-
terances of class i. Hence each vector of the utterance
is mapped to a single state in the HMM representing
the utterance. For the purposes of the adaptation, the
HMM states play the réle of the sound-classes and the
vectors associated with each state are the ‘examples’
of these pseudo-classes. We assume that the vector
dimensions are independent and treat each dimension
separately.

The data consisted of 3 utterances of the alpha-
bet from 104 speakers and was divided equally into
balanced sets of 13 enrollment classes and 13 test-
ing classes. Isolated-word SI CDHMMs (10 states per
model, single component Gaussian densities, diagonal
covariance-matrix), were trained for each class using
data from the 52 training-set speakers, and this data
was then Viterbi-aligned to the appropriate model. For
each speaker k, sample means for each enrollment-class
(z) state and test-class (y) state were computed to-
gether with sample standard deviations. Linear regres-
sion models were then formed as follows:



For each vector dimension do
For each state j of each enrollment class ¢ do
For each state n of each test class m do
Form a sca.ttergram using the 52 pairs of
data points {z¥ i % m} which have
associated st.devs, {s,J, sk m}
Compute the best-fit line
Yn,m = Qi jnmTij + bi,j,n,m
through the scattergram and store the
regression coefficients @; j n,m, bi jn,m
and correlation coefficient r; j n.m

This algorithm was repeated for each vector dimension.
Note that the above procedure is strictly linear fitting
rather than linear regression, since both ¢ and y data
have associated uncertainties. Since there were 130 en-
rollment class states and 130 test class states in these
experiments, the procedure involves the computation
and storage of 16900 sets of regression coefficients.

3.2. Adaptation strategy

Given some utterances of a subset of the enrollment
classes from a new (test-set) speaker, each utterance
is Viterbi-aligned to the appropriate model (i.e. adap-
tation is supervised) and the mean computed for each
state of each enrollment class. Hence a set of mean
value estimates u;,7 = 1,2,..., M (where M = (no of
enrollment classes supplied) r (no of states per model))
is available and each u; is used with the appropriate re-
gression model to produce an estimate 9; of each test-
ing class state mean. If it is assumed that 9; has been
drawn from a normal distribution, it can be shown that
the ML estimate of a test class state mean (in a given
vector dimension) is given by 9z where

we=(St) (o) ©

where #; is the estimate from the ’th regression model
which has sample correlation coefficient r;. Given a
prior distribution for the state mean vector (assumed
normal with mean psr and variance o%;), the MAP
estimate of the mean is shown to be

u
Y >]/
(6)

Note that when r; = 0, the regression line is a horizon-
tal line through psy and v; = pgs for any value of u;.
In the extreme case where all the available adaptation
states are uncorrelated with v, both the ML and MAP
estimates reduce to uss i.e. the adaptation “fails safe”.

M

ity

i=1

UMAP =

+Z(1 2)]

702

6 - -2

<4 20
9 -
e 54 419 §
P9 g
E 9 NTE-
S v
B =
Z £
& 44 117 38
: - :

~——&—— Recognition 4 16

~—ae—- Prediction
3 .., rry 15

10 100 1000

Number of states used to make prediction

Fig 1: Effect of varying number of states used to make prediction
(All 13 enrollment classes available, MAP estimate)

Adaptation of the test classes consisted of replacing
the ST HMM test-class means with @prz or 9ar4p. The
means of the enrollment classes supplied by the new
speaker were adapted by replacing the HMM means
with the estimated mean for each enrollment class
state, T¥ ;- The model variances were not adapted. To
avoid testing with enrollment data, only the utterances
of the test classes were tested, but all models were ac-
tive during a test.

4. EXPERIMENTAL RESULTS

The 52 speakers in the test-set each gave three exam-
ples of the test classes, making a total test-set size
of 1984 utterances (44 utterances were missing). The
error-rate for the system with no adaptation was 17.0%.
Firstly, the effect of using varying numbers of states to
predict each test-class mean was studied. When ex-
amples of all 13 enrollment classes were given by the
speaker, there are a total of 130 states available for pre-
diction of each test class state mean value. The effect
on (a) prediction error and (b) recognition accuracy of
using only the ‘best’ P states to make the prediction
was measured. By the ‘best’ P states, we mean that
for each test class state predicted, the enrollment class
states were ranked according to their average correla-
tion with the test class state and the top ranking P
states used to make the prediction. Fig 1 gives pre-
diction and recognition error-rates vs. P when the
MAP estimate was used. Prediction and recognition
performance track quite closely (as might be expected)
and peak when only 5-6 of the 130 available states are
used. If more than about 5 states are used for pre-
diction, the lower ranking (i.e. more poorly correlated)
states contribute noise to the estimate and performance
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Fig 2: Recognition error vs. number of enrollment classes
available for ML and MAP estimates

worsens slightly. Secondly, the number of available en-
rollment classes supplied by each test-set speaker was
varied from 1 to 13 and recognition accuracy using the
“best” 5 available states was measured. The result is
shown in Fig 2 for both ML and MAP estimates of
the adapted models. In both cases, the error-rate has
dropped by over 50% when only the first two enroll-
ment classes have been given. Full adaptation has been
reached when the first 10 classes have been presented,
when the error-rate is 3.4%. This figure should be com-
pared with a best error-rate of 14.8 % produced by the
“bias” technique (described in section 2) on this data.
Also included on Fig 2 Is an estimate of human perfor-
mance on the same data. This figure (1.2%) was ob-
tained from listening-tests on 25 subjects without any
adaptation to the voice of each speaker in the database
[3]. Although not definitive, it gives some idea of the
performance obtainable by humans on this data.

5. SUMMARY

We propose a method of adapting SI speech models
to the voice of a new speaker which is based on mod-
elling the relationship between different speech units
using linear regression and using the regression mod-
els to predict unheard sounds from the speaker. The
technique offers several advantages:

o Efficiency—all speech models can be adapted
given only a subset of the vocabulary from the
new speaker.

¢ Flexibility—several models can be built off-line
and the most useful ones used at recognition time.
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¢ Parameter estimation—the models can be built
from a training-set containing a large number of
speakers and utterances, leading to good param-
eter estimates.

¢ Speed—computational requirements at recogni-
tion time are low because no parameter estima-
tion is required, only model adaptation.

A technique for applying this scheme within the frame-
work of continuous density hidden Markov models has
been described and ML and MAP estimates for the
predicted values derived. When applied to a database
of 104 speakers each speaking utterances of the alpha-
bet, the technique was shown to reduce the error-rate
from 17.0% to 3.4%. Although the baseline recognition
system was not a particularly sophisticated one and
no attempt was made to optimise its performance, the
adaptation performance is impressive and encourages
us to experiment with the technique on more difficult
speech recognition tasks.
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