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ABSTRACT

This paper proposes a novel speech adaptation algo-
rithm that enables adaptation even with a small amount
of speech data. This is a unified algorithm of two
efficient conventional speaker adaptation techniques,
which are maximum a posteriori (MAP) estimation and
transfer vector field smoothing (VFS). This algorithm
is designed to avoid the weaknesses of both MAP and
VFS. A higher phoneme recognition performance was
obtained by using this algorithm than with individual
methods, showing the superiority of the proposed al-
gorithm. The phoneme recognition error rate was re-
duced from 22.0% to 19.1% using this algorithm for
a speaker-independent model with seven adaptation
phrases. Furthermore, a priori knowledge concerning
speaker characteristics was obtained for this algorithm
by generating an initial HMM with the speech of a
selected speaker cluster based on speaker similarity.
The adaptation using this initial model reduced the
phoneme recognition error rate from 22.0% to 17.7%.

1. INTRODUCTION

Recently, speaker adaptation methods have been stud-
ied for continuous mixture density HMM (CDHMM)
based speech recognition systems. The key point of
the speaker adaptation is how to estimate the model
parameters with a small amount of adaptation data
in order to obtain a high recognition performance. In
addressing this problem, it is essential to consider com-
pensating for information lacking from the adaptation
data by using information from an initial model as
a priori knowledge. However, the speaker adaptation
then has the following problems.

¢ How to obtain a good initial model.

e How to combine a priori knowledge with a poste-
riori knowledge.
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e How to interpolate the untrained parameters with-
out training data.

An initial HMM must compensate for information
lacking from the adaptation data when training data
is sparse. Usually, a well-trained speaker-independent
(SI) model that includes the information of a large pop-
ulation of speakers, and is used as an initial HMM,
includes not only effective information but also inade-
quate information for an adapted speaker. However a
good initial model is one that can reduce inadequate
information and extract useful information for a tar-
get speaker selectively. Gender-dependent models are
one example of good models and their effectiveness has
been reported[1]. In this paper, in order to get a pri-

-ori knowledge concerning more detailed speaker char-

acteristics, a speaker-clustering (SC) model is used as
an initial model. The SC model is generated by us-
ing the speech of a selected speaker cluster based on
speaker similarity. The cluster selection is performed
with a tree-structured speaker clustering technique(2]
which selects the size and members of the cluster si-
multaneously using an utterance of a target speaker.
For the second problem, maximum a posteriori (MAP)
estimation gives a good solution[1][3]{4]. MAP estima-
tion uses information from an initial model as a priori
knowledge to compliment the training data. This a
priori knowledge is statistically combined with a pos-
teriori knowledge derived from the training data based
on the amount of training data. In this method, how-
ever, some parameters having no training data are not
trained, so interpolating these parameters is required.
The remaining problem is about untrained or insuf-
ficiently trained parameters without training data. To
deal with this problem, transfer vector field smoothing
(VFS) has been proposed[5]. This technique is based
on the assumption that one speaker’s acoustic feature
space is transferable to another’s continuously. Under
this assumption, the VFS deals with the adaptation of
mean vectors of Gaussian distributions in CDHMMs.



The VFS algorithm consists of three steps, i.e. 1) Es-
timation of transfer vectors, 2) Interpolation, and 3)
Smoothing. The transfer vectors imply the difference
of the mean vectors between the initial model and the
target model. Through the transfer vectors, the VFS
also uses the information (i.e. mean of Gaussian distri-
butions) of the initial model. In step 1), the transfer
vectors are obtained by Maximum Likelihood (ML) es-
timation for the training data. In step 2), the untrained
mean vectors having no training data are interpolated
with the trained transfer vectors. In step 3), each trans-
fer vector is smoothed with the other transfer vectors.
Usually, the amounts of training data of the individual
transfer vectors are not in balance when the training
data is sparse. For this reason, the reliability of each
estimated transfer vector is also different from the oth-
ers. For each step of the VFS, therefore, consideration
on the reliability of transfer vectors is required.

In this paper, the usage of an SC model as an initial
model of speaker adaptation is proposed. In addition,
a unified algorithm of the above two techniques (MAP-
VFS) is proposed to solve the problems of individual
methods and to achieve effective adaptation by using
information from an initial model.

This paper is organized as follows. Section 2 gives
details of the MAP-VFS algorithm. In Section 3, an
application of this algorithm to an SI model and the
subsequent evaluation are reported. Furthermore, to
evaluate the effectiveness of an initial model, an SC
model generated by using information of similar speak-
ers to the adapted speaker is used as an initial model.
The evaluation of the MAP-VFS algorithm with this
initial model is shown.

2. MAP-VFS ALGORITHM

The MAP-VFS algorithm proposed here integrates MAP
and VFS by the following three steps. First, the trans-
fer vectors are estimated by MAP estimation. Then,
interpolation and smoothing are performed using the
transfer vectors obtained by the MAP estimation. Usu-
ally, when adapting parameters of CDHMMs using a
small amount of training data, it is more effective to
adapt the mean vectors of Gaussian distributions only
than to adapt with the variance, transition probability
and mixture gain for each Gaussian mixture. There-
fore, in this paper, only the mean of each Gaussian
distribution is adapted; the other parameters are not
adapted.

2.1. Estimation of Transfer Vectors with MAP

The mean vectors of the Gaussian distributions of the
initial model are recalculated through concatenation

689

training. Let ,u{, and ,u{,z be the p-th mean vector of
the Gaussian distribution of the initial model and the
retrained model, respectively. Then, the transfer vector
for the p-th mean vector vy is the difference between
uf and ,u{,.

Up =y — iy (1)
where p € K; (K is the Gaussian distribution set hav-
ing the training data). In this adaptive training, each
mean vector /1.{, of the initial model is used as the mean
of an a priori distribution. Then, the MAP estimates
of the mean yf are solved by[6]

n T

'uf:n+fmp+n+rﬂ{’ (2)
where m, is the sample mean of the p-th Gaussian dis-
tribution and also the Maximum Likelihood estimate,
n is the total number of training samples observed for
the corresponding Gaussian mixture component, and
T indicates the relative balance between the a prior
knowledge and empirical data. Substituting this into
Eq.(1), the transfer vector v, is given by

_,R_, I__" I
Up = fly — Hp = m(mp = tp) (3)
Then, the transfer vector v, which is obtained by MAP
estimation is represented as follows with the transfer
vector v},‘" L(=mp - ug which is estimated by Maxi-
mum Likelihood (ML) estimation.
n_ ML
— 4
n+7 ? (4)
This equation shows that the transfer vector with MAP
estimation is obtained by modifying the transfer vec-
tor v ¥ with ML estimation by the weighting coeffi-
cient which is a function that depends on the amount
of training data n.

Up=

2.2. Interpolation of transfer vectors

Because of the limited amount of training data, not all
mean vectors can be trained. These untrained mean
vectors are characterized by ,ug (¢ € K5 : K, is the set
of Gaussian distributions having no training data). The
transfer vector v, of ug is interpolated according to the
following equation using the trained transfer vectors v,.

Vg = Z Agkvk / Z Agk (5)

keN(q) keN(9)

where N(q) is the set of k-nearest neighbors to pg. The
Ak 1s the weighting coefficient that depends on the
distance between pg and pf. Then, pg is transferred to

,uf using the interpolated transfer vector v,.

e =y + g (6)



2.3. Smoothing of transfer vectors

For all of the trained transfer vectors v,(p € Ki), a
smoothing operation is performed with Eq.(7). This
smoothing operation assumes that all of the transfer
vectors are combined with the restriction of continuity.
In other words, one speaker’s acoustic feature space is
assumed to be transferable to another’s continuously.

vs= Y Mprve/ D Aok @)

keN(p) keN(p)

Then, the mean values of Gaussian distributions can be
modified using the smoothed transfer vectors by Eq.(8).

py =y +vp (8)

In this paper, six nearest neighbors are used for both
interpolation and smoothing. The weighting coefficient
Aa,p is calculated by Eq.(9).

hos = exp (T2t ©

where dg 3 is the distance between p% and pf, and f is
a weight control parameter.

3. EXPERIMENTS

3.1. Experimental conditions

We examined the proposed MAP-VFS speaker adap-
tation algorithm on Japanese 26-phoneme recognition.
The experimental conditions are listed in Table 1. A
200-state Hidden Markov Network (HMnet)[7] is used
to allow us to efficiently share system parameters in
phoneme context-dependent HMMs. The number of
mixture components per state is five for the SI model,
and five or less for the SC model. Diagonal covari-
ance matrices are used. Considering the dependency on
training data for the speaker adaptation performance,
the experiment is repeated five times for different train-
ing data selections.

3.2. Adaptation for Speaker-Independent Model

Speaker adaptation is performed for a SI model gener-
ated by using the speech of 285 speakers.

Figure 1 shows the phoneme recognition rate of
the following four speaker adaptation methods: 1) re-
training by maximum likelihood estimation (ML), 2)
re-training by MAP estimation (MAP), 3) VFS with
ML estimation (VFS), and 4) VFS with MAP esti-
mation (MAP-VFS) which is the proposed method.
MAP-VFS achieves a higher performance than MAP
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Table 1: Experimental Conditions
[ Analysis conditions ]
Sampling frequency 12kHz
Hamming window 20ms, Frame period 5ms
L Analysis ]
16-order LPC-Cepstrum + 16-order ALPC-Cepstrum
+ log power + Alog power

| Training data ]
| 146 males + 139 females {50 Japanese sentences per person) |
[ Adaptation/Recognition data ]

Speakers 4 males (MAU MMY MSH,MTM)

3 females (FAF,FMS,FYM)
Adaptation Random sampled N phrases (N =1,3,5,7
from 256 Japanese phrases (SB1 task)
Recognition

279 Japanese phrases (SB3 task)

and VFS, each of which still shows a higher perfor-
mance than ML. This shows that the proposed MAP-
VFS method successfully unites these two methods.

Table 2 shows that MAP-VFS achieves stable adap-
tation in proportion to the increase in the number of
adaptation phrases for all speakers. Compared with
the SI results, the phoneme error reduction is 5.3 ~
19.9% (average of all speakers: 13.2%) by performing
the speaker adaptation with the MAP-VFS method us-
ing seven adaptation phrases.

3.3. Adaptation for Speaker-Clustering model

To get a priori knowledge concerning speaker charac-
teristics, speaker adaptation is performed for the SC
model which is generated by using the speech of a
speaker cluster automatically selected from out of 285
speakers with a tree-structured speaker clustering al-
gorithm. '
Table 3 shows that the phoneme error reduction
is 6.8 ~ 34.4% (average of all speakers: 19.5%) over
the SI results with seven adaptive phrases. Compar-
ing this with the result of the previous section (13.2%)
which is the experimental result directly adapted from
the SI model with the MAP-VFS method, it is clear
that the a priori knowledge from the SC model is effec-
tively combined with the MAP-VFS method. Looking
at the results for the individual speakers, those who
had lower performances with the SI model (FYM, MSH
etc.), showed remarkable performance improvements.
This confirms the effectiveness of adaptation using the
a priori knowledge of the SC model in the MAP-VFS
method. On the other hand, for speakers who had
higher performances with the SI model (MTM, MAU
etc.), the SC model had little effectiveness. Overall the
SC model with MAP-VFS, achieved low recognition er-
ror rates (less than 21.4%) using only seven adaptive
phrases for all evaluated speakers. Because obtaining a



good performance for all speakers is an important fac-
tor in speaker-independent speech recognition based on
speaker adaptation, this result confirms the usefulness
of the combined approach.

4. CONCLUSIONS AND FUTURE WORK

In this paper, a unified MAP-VFS algorithm has been
proposed. We have examined that this unified method
allows individual methods, i.e. MAP and VFS, to com-
pliment each other’s weaknesses. The effectiveness of

this method has been shown in Japanese phoneme recog-

nition experiments and a higher performance has been
obtained compared with that of individual methods.
Furthermore, considering the importance of a priori
knowledge for the MAP-VFS method, we have adopted
a tree-structured speaker clustering method to obtain
a good initial model. Using this initial model, a higher
phoneme recognition performance was obtained than
that possible with an SI model as the initial model.
As a result, the phoneme recognition error rate was
reduced from 22.0% to 17.7% only with seven adapta-
tion phrases, which corresponds to utterances of about
6.3 seconds. We plan to apply this method to on-line
adaptation and unsupervised adaptation.
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Figure 1: Phoneme recognition error rates for four
speaker adaptation methods (average of 4 males and
3 females)

Table 2: Results of speaker adaptation from SI model
using MAP-VFS method(%)

speaker ) total training phrase numbers
model 1 [ 3 | 5 [ 7
MAU 18.2 18.3 17.5 16.7 16.4
MMY 19.0 19.2 18.4 18.0 18.0
MSH 24.1 23.7 221 21.6 21.0
MTM 17.5 16.6 159 15.6 15.0
FAF 21.5 20.4 18.9 17.9 18.1
FMS 21.1 20.5 19.6 19.3 19.0
FYM 32.6 30.4 27.6 271 26.1

[ average | 220 [ 213 | 20.0 | 19.5 | 19.1 |

Table 3: Results of speaker adaptation from SC model
using MAP-VFS method (%) (values in parentheses are
results for the SC model)

speaker SI total training phrase numbers
model 1 [ 3 | 5 | 71

MAU 18.2 21.6 16.9 16.2 15.9
(21.0) | {(18.1) | (18.1) | (18.1)

MMY 19.0 21.2 18.2 17.7 17.7
(20.1) | (18.5) | (18.2) | (18.5)

MSH 24.1 23.8 20.2 19.0 18.5
(23.4) | (21.0) | (21.0) | (21.0)

MTM 17.5 19.1 16.1 15.8 15.4
(19.4) | (17.3) | (17.3) | (17.1)

FAF 21.5 18.6 17.7 16.9 17.1
(18.8) | (19.0) | (19.0) | (19.0)

FMS 21.1 18.6 17.8 17.4 17.8
(19.3) | (18.8) | (19.3) | (19.7)

FYM 32.6 25.8 22.7 21.6 21.4
(24.4) | (22.1) | (22.5) | (22.1)

average 22.0 21.2 18.5 17.8 17.7
(20.9) | (19.3) | (19.3) | (19.4)




