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ABSTRACT

A key issue in speaker adaptation is gaining the maximum

information from a limited amount of adaptation data. In
particular it is important that observations of parameters of
(context-dependent) HMMs not occurring in the adaptation
data can be updated. In the Regression-based Model Pre-
diction (RMP) approach, sets of speaker-independent Ln-
ear relationships between different parameters in the HMM
set are found from training data. During adaptation, dis-
tributions with sufficient adaptation data are used to up-
date the parameters of poorly adapted models using these
pre-computed regression-based relationships. The method
used Bayesian techniques to combine parameter estimates
from different sources. Evaluation on the ARPA Resource
Management corpus gave a worthwhile reduction in error
rate with just a single adaptation sentence, and that RMP
consistently outperforms MAP estimation with the same
amount of adaptation data.

1. INTRODUCTION

Although modern speaker independent (SI) continuous
speech recognition systems show impressive performance,
their error rates are still much higher than a well-trained
speaker dependent (SD) system. Speaker adaptation tech-
niques that attempt to adapt the parameters of a speaker
independent system to get speaker-dependent performance
with only a small amount of speaker-specific data are there-
fore of interest. A key issue for such techniques is extract-
ing the maximum information about the new speaker from
a limited amount of data.

A standard adaptation approach for continuous density
HMM systems uses Maximum a Posteriori (MAP) param-
eter estimation [1, 2} which combines estimates obtained
from the adaptation data with prior parameter estimates
from a speaker independent model. However, in this ap-
proach only distributions for which observations occur in
the adaptation data are updated. This problem is partic-
ularly severe in large vocabulary speaker independent sys-
tems since such a system may contain millions of parame-
ters. This means that techniques such as MAP require a
relatively large amount of adaptation data before they are
effective. One approach [3] to this problem trains a small
number of regression matrices on the available adaptation
data and transforms all the mean vectors in the system
using one of these matrices. However this technique is re-
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stricted to fairly broad adjustments to the parameter values,
and requires several adaptation sentences before it starts to
be effective. .

This paper describes a method for rapid adaptation
called Regression-based Model Prediction (RMP). Linear
relationships between particular system parameters are
computed which are later used in the adaptation phase to
update parameter values for distributions not observed in
the adaptation data. This updating process uses a small
number of well-adapted distributions (source distributions)
to predict suitable parameter values for the unseen or poorly
adapted distributions (target distributions) using the linear-
regression derived relationships. A Bayesian approach is
then used to combine the target predictions with prior pa-
rameter estimates. :

Earlier work on regression based prediction for adapta-

‘tion was reported by Cox [4] who worked on single Gaussian

HMMs for a small vocabulary, isolated word recognition
task. The RMP method can be viewed as an extension of
this work to 1000 word vocabulary continuous speech recog-
nition using context dependent mixture Gaussian models
containing orders of magnitude more parameters. To ac-
commodate this change in focus the method has been con-
siderably extended and refined.

2. ADAPTATION ALGORITHM

The RMP algorithm operates in two stages. First conven-
tional MAP estimation is applied to re-estimate the mean
vectors given the adaptation data, and then the predictive
linear relationships are used to update the target model
parameters given the MAP estimated source model param-
eters.

2.1. Initial MAP Estimation

Initially the forward-backward MAP algorithm [2] is used
to estimate an initial set of speaker adapted models us-
ing the available source data. This algorithm combines
speaker independent prior estimates of model parameters
with the adaptation data in an Expectation-Maximization
(EM) framework. This approach gives good estimates of
model parameters if there is a few samples of adaptation
data for that parameter.

In the work reported here, this initial MAP estimation
phase is applied to the HMM mean vector only. Given an
adaptation sequence x = (zi1,...,z7) for an HMM with
output distributions consisting of a mixture of Gaussian
densities, the MAP re-estimate of the Gaussian means for
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HMM state i, mixture component k is [2]
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where pix is the prior mean, 7ix is a parameter controlling
the relative weight of the prior and adaptation data, x is
the adaptation data samples, and cix: is the probability of
being in state ¢ and mixture component k at time ¢ given
that the model generates the sequence x.

2.2. Model Prediction

In this stage linear relationships between model mean pa-
rameters are used to update target distributions using the
MAP-adapted source distributions. The linear relation-
ships between source and target parameters are derived
from speaker-dependent sets of models using multiple linear
regression and have the form

P
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where y is a target mean, the z; are the values of the corre-
sponding mean elements from the source distributions, the
a; are regression coefficients, and P is the regression order
(number of source distributions for each target). This sec-
tion first describes how the regression coefficients are com-
puted and then how the target distributions are updated.
First a set of N speaker dependent models are trained.
It is assumed that the parameters of these models are exact
for the speakers that they represent. Then, the regression
coefficients a; can be found from solving the following ma-

trix equation [5]
Ua=V (3)

where U is a P x P matrix, and a and V are P x 1. The
matrix elements are given by
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where y and z are the target and source distribution pa-
rameters. The value of ag can be found using %;, §, and a;
in (2).

The squared multiple correlation coefficient between the
target y, and the regression predicted target value y' can
be found by

= Zlil a E.’Zl(yi — §)(zw — %)
Z?Ll(yi - §)?

where N is the number of speakers (SD model sets) taking
part in the regression.

Given the source parameter values and a set of regression
coefficients, an estimate of the target value can be found by
(2). In order to combine this estimate with the estimate, for
the target parameter, derived from the initial MAP phase

R, (6)
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using a Bayesian approach (with the initial MAP estimate
as a prior), the variance of the predicted target parameter
is required. ‘
Assuming that the mean element values are normally dis-
tributed over different speakers, then the estimated sample
variance due to multiple regression can be calculated as [6]
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where 312, is the sample variance for the target element in the
set of SD systems. The quantity s2 is the estimated vari-
ance of the target elements predicted using the regression
parameters (a;) and particular source distribution param-
eter values. However, there is additional variance in the
target values due to the fact that the source distribution
values are not exact (i.e. not the true SD values), but are
based on the initial MAP estimate which uses a relatively
small amount of adaptation data.

In order to find the additional variance due to the errors
in the source distribution parameter estimates, the sample
variance of the MAP estimated parameters compared to the
true (i.e. SD) values is computed for each element of each
source distribution as follows

N
331 = N—l-_—lz [(z‘u — i) — %Z:’:l(zlj - VU)]2 (8)

where v;; stand for the MAP estimated source elements.
This extra variance due to the source distribution estimate
error will decrease as more adaptation data is used.

Therefore the total variance for the regression predicted
target element, assuming, for the sake of simplicity, that
source distributions are independent is
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Given -the variance of the predicted target element, a
Bayesian approach to combine the regression-predicted ele-
ment with the prior estimate from the initial MAP estima-
tion phase can be used. Assuming the distribution of the
means to be Gaussian, and using the concept of conjugate
priors the final estimate for any mean element of the target,
m, can be found by [7]

2 2
e (10)
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where ¢ and s% are initial MAP estimated mean for the
target and the variance associated with it, and s and s2 are
the regression predicted mean and its variance respectively.
Finally, the sample variance for the initial MAP esti-
mated priors in (10) can be found using the SD model set to



compute the variance of the target initial MAP estimated
means:
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2.3. RMP Implementation

The RMP adaptation algorithm, as described, would be
computationally expensive unless some constraints are ap-
plied to it. For example, a 3-state triphone HMM set with 2
mixture components per state, in our implementation, con-
tains more than 3000 mixture components. This means that
about 350 million relationships are required before the best
correlated distributions can be found. Even larger numbers
of relationships must be found when more Gaussians are
used.

In order to reduce this computation to be more manage-
able, and also to separate the better-trained source distri-
butions from the more poorly-trained targets, the search
for source distributions for each target is restricted. Target
distributions are distinguished from the sources by having
occurred less than a prespecified threshold number of times
in the adaptation data, while source distributions must have
received sufficient adaptation; the source and target distri-
butions must occur in the same HMM state position, and
must be from the same broad speech class (vowel or con-
sonant). The source distributions, subject to the above re-
strictions, are then chosen for each target to have the max-
imum average squared correlation coefficient. A threshold
is also set on the correlation coefficients to prevent weak
relationships from being used in adaptation.

3. EXPERIMENTS AND RESULTS

The RMP approach has been evaluated on the ARPA RM1
continuous speech database. The HTK HMM toolkit was
used for all model building and recognition, and special
tools were written for forward-backward MAP estimation
and model prediction. The database was parametrised us-
ing 12 Mel frequency cepstral coefficients, normalised log
energy and the first and second differentials of these pa-
rameters. A baseline SI state-clustered word-internal tri-
phone gender independent system was trained using the
109-speaker SI training data. The state clustering proce-
dure used the decision tree method described in [8]. Both
single Gaussian and mixture Gaussian versions of this SI
system were trained, and these SI model sets were used as
a base for all experiments.

For building SD model sets, 600 RM SD training sen-
tences were used, and all word error rates computed using
100 test sentences for each speaker and then averaged over
the 12 RM SD speakers. The standard word-pair grammar
was used for all recognition tests. For adaptation experi-
ments, a portion of the SD training data from each speaker
was used as adaptation data with the sentences taken in or-
der from the database. SD systems were trained using both
maximum likelihood (ML) estimation with the SI set as
the initial models, and MAP estimation with the SI system
used both as initial models and for prior parameter calcu-
lation. The MAP SD systems give lower error rates than
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Number of Adaptation Sentences
[0 ] 1 ] 10 [ 40 | 100 [ 600
| Single Gaussian Models |
SI 10.21 - - - - -
SD - - - - - 4.63
MAP || 10.21 | 10.54 [ 9.95 | 7.96 | 6.64 | 4.07
RMP |j 10.21 | 9.42 | 8.37 | 7.06 | 6.15 | 4.07
[ 2 Component Mixture Models ]
SI 7.87 - - - - -
SD - - - - - 3.13
MAP 7.87 7.76 | 7.15 | 6.35 | 5.29 | 2.82
RMP 7.87 731 | 6.72 | 5.90 | 4.98 | 2.82
| 6 Component Mixture Models ]
SI 5.92 - - - - -
SD - - - - - 2.14
MAP 5.92 599 | 5.74 | 5.09 | 4.09 | 2.06
RMP 5.92 5.44 5.19 | 4.56 | 3.86 | 2.06

Table 1. Percent word error rates obtained with SD, SI, MAP,
and RMP for single Gaussian, two component, and six compo-
nent Gaussian mixture models. All results are averaged over
all 12 available test speakers.

the ML models and were used to find the correlations be-
tween models and hence the regression parameters. Table 1
shows both ML .SD results (under SD) and MAP SD re-
sults (under MAP with 600 training sentences). All models
built using MAP estimation set the 7;x parameter in (1) to
the fixed value of 10. Due to the limited number of speak-
ers in the speaker dependent portion of the RM database,
during testing for each speaker, the data from all other 11
speakers was used to build the SD models and compute re-
gression parameters. Hence, this reduces the number of SD
models available to estimate the regression parameters, as
well as requiring both stages of adaptation to be carried out
for each individual speaker. These problems both could be
avoided if a larger number of speakers was available in the
SD portion of the database. If all the speakers in the SD
model set are used for the regression calculations, includ-
ing the speaker currently under test, a very small further
decrease in word error rate is obtained.

In the experiments reported here, there were two source
distributions for each target. After finding suitable source
distributions, the correlations, regression coefficients and
variances were computed using the relationships given in
(7), (8), and (11). Finally, for each target distribution,
the initial MAP estimated values for each parameter were
combined with the regression-based predicted values using
(10).

Experiments were performed to compare the effectiveness
of the RMP approach with a standard MAP approach for
various numbers of adaptation sentences and model sets
with single Gaussian, two component Gaussian mixtures
and six component mixtures. Table 1 gives word error
rates with no adaptation data (i.e. SI performance), and for
points between one and 600 adaptation utterances. With
600 utterances the variance of the MAP estimate computed
by (11) is zero, and hence the MAP and RMP values are
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Figure 1. Percentage of word error rate reduction obtained for
single Gaussian and six component mixture Gaussian models
versus the number of adaptation sentences for SD, MAP, and
RMP averaged over all 12 speakers.

identical. For small amounts of adaptation data the RMP
approach leads to a significant reduction in error compared
to both the speaker independent systems and MAP. 1t is
of interest that the improvement using only one adaptation
sentence, which is on average about 3 seconds in duration,
leads to an 8% reduction in word error rate for the 6 compo-
nent mixture Gaussian system. This corresponds to about
13% of the error reduction of the speaker dependent sys-
tem, and is shown in the Figure 1. It should also be of
interest that in this case, the average result obtained us-
ing MAP estimation does not show any improvement over
SI result. Another point to be noted here is that in the
6 mixture one adaptation sentence RMP tests, the results
obtained for all individual speakers except one, either out-
performed or were equal to SI or MAP, which is a good
indication of robustness of this technique with very small
amounts of adaptation data. As can be seen in the Figure
1, the amount of the error reduction obtained with RMP is
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consistently above that for MAP estimation for all system
configurations and amounts of adaptation data below 600
sentences. It should be emphasised that in this figure, the
horizontal axes are non-linear to show the effects of using
small amounts of adaptation data.

4. CONCLUSIONS

A technique for rapid speaker adaptation has been pre-
sented that exploits correlations between system parame-
ters to predict suitable values for model parameters not
observed in the adaptation data. Experiments show that
with only one adaptation sentence significant reductions in
error rates can be achieved, and that with larger amounts
of adaptation data the technique converges to speaker de-
pendent performance. ’

ACKNOWLEDGEMENTS

S.M. Ahadi is supported by a studentship from the Iranian
Ministry of Culture and Higher Education.

REFERENCES

[1] C-H. Lee, C-H. Lin, & B-H. Juang (1991). A Study
on Speaker Adaptation of the Parameters of Continu-
ous Density Hidden Markov Models. IEEE Trans. Sig.
Proc., Vol. 39, No. 4, 806-814.

[2] J-L. Gauvain & C-H. Lee (1994). Maximum a Posteriori
Estimation for Multivariate Gaussian Mixture Observa-
tions of Markov Chains. JEEE Trans. SAP, Vol. 2, No.
2, 291-298.

[3] C.J. Leggetter & P.C. Woodland (1994). Speaker Adap-
tation of Continuous Density HMMs Using Linear Re-
gression. Proc. ICSLP’94, Yokohama.

[4] S.J. Cox (1993). Speaker Adaptation Using a Predictive
Model. Proc. Eurospeech’93, Vol. 3, 2283-2286, Berlin.

[5] S. Chatterjee, & B. Price (1991). Regression Analysis by
Ezample. John Wiley & Sons, New York, 2nd Edition.

[6] 0.J. Dunn & V.A. Clark (1987). Applied Statistics:
Analysis of Variance and Regression. John Wiley &
Sons, New York.

[7] M.H. DeGroot (1970).
McGraw-Hill, New York.

[8] P.C. Woodland, J.J. Odell, V. Valtchev, and S.J. Young
(1994). Large Vocabulary Continuous Speech Recogni-

tion Using HTK. Proc. ICASSP’94, Vol. 2, 125-128,
Adelaide.

Optimal Statistical Decisions.



