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ABSTRACT

We present a framework for Maximum A Posteriori adaptation

of large scale HMM speech recognizers. In this framework, we
introduce mechanisms that take advantage of correlations present
among HMM parameters in order to maximize the number of pa-
rameters that can be adapted by a limited number of observations.
We are also separately exploring the feasibility of instantaneous
adaptation techniques. Instantaneous adaptation attempts to im-
prove recognition on a single sentence, the same sentence that is
used to estimate the adaptation.
In a nutshell, we show that sizable gains (20-40% reduction in er-
ror rate) can be achieved by either batch or incremental adaptation
for large vocabulary recognition of native speakers. The same
techniques cut the error rate for recognition of non-native speak-
ers by factors of 2 to 4, bringing their performance much closer
to the native speaker performance. We also demonstrate that
good improvements in performance (25-30%) are realized when
instantaneous adaptation is used for recognition of non-native
speakers.

1. INTRODUCTION

State-of-the-art speaker independent (SI) HMM recognizers use
tens of hours of speech from many speakers to estimate their pa-
rameters. The resulting models may perform well, but they do
not represent the true distribution of any of the training speak-
ers. Furthermore, these models suffer serious degradations when
tested on speakers/environments not represented in the training.
A speaker dependent (SD) system would, in principle, outperform
a SI system, but it is usually impractical to collect the hours of
speech required to train it from a single speaker. Instead, adap-
tation techniques are called for to move the SI model closer to
the model of the speaker in question and improve performance.

In general there are three strategies on how to adapt the HMM:
(i) batch adaptation, where we collect a limited amount (minutes)
of enrollment data and use it to train the adaptation; (ii) incre-
mental adaptation, where the system adapts unsupervised every
sentence the user says and uses the adapted model for the next
sentence and (iii) instantaneous adaptation, where we attempt to
improve recognition on the same data that is used to estimate the
adaptation transformation. Instantaneous adaptation is especially
useful in applications where there is a very brief interaction be-
tween the speaker and the system; the use of even the smallest
amount of enrollment data is then inconceivable, and incremental
adaptation is not given enough time to improve significantly.
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Our algorithms for supervised and incremental adaptation tasks
are based on the Maximum A Posteriori (MAP) estimation of
HMM parameters [1, 2]. MAP provides an optimal solution to
the problem of combining the prior knowledge of the SI system
with the data from the new speaker, and it has the advantage
of asymptotically converging to the SD model. However, MAP
changes only the parameters for which data are available. To
ameliorate this problem we introduce two generalization mecha-
nisms: (i) the application of an Extended MAP (EMAP) estima-
tion that takes into account correlations present across HMM pa-
rameters [3], and (ii) smoothing new estimates of detailed models
with the estimates of artificially introduced more general models.

Instantaneous adaptation has been rarely treated in the litera-
ture so far. The problem is harder than other adaptation tasks
because we have very little data to change our model (one sen-
tence) and we are testing on the same data used to estimate the
adaptation. Consequently algorithms that require a lot of adap-
tation data to become effective are destined to fail. Similarly,
transformations that have many degrees of freedom (and hence
“learn” the adaptation data quickly) will simply repeat the er-
rors that are present in the recognizer output which is used to
supervise the adaptation. The approach we follow is to tie all
the parameters to phoneme classes and then use EMAP and the
Probabilistic Spectral Mapping (PSM) [4] to re-estimate them.

We evaluate our work with the BBN BYBLOS Phonetically
Tied Mixture (PTM) HMM, and we present results of the 5K
word tests of the ARPA Wall Street Journal (WSJ) Corpus [5].
Particular emphasis is given to the recognition performance of
non-native speakers of American English. These speakers, having
on the average 4 to 6 times the error the native speakers have,
present a serious obstacle to the widespread use of commercial
speech recognition systems.

2. BATCH AND INCREMENTAL MAP ADAPTATION

2.1. MAP adaptation

The MAP framework provides a way of incorporating prior infor-
mation in the estimation process, which is particularly useful for
dealing with problems posed by sparse training data, for which
Maximum Likelihood (ML) estimation gives inaccurate estimates.
The difference between MAP and ML estimation lies in the as-
sumption of an appropriate prior distribution of the parameters
to be estimated. If A, which is assumed to be a random vector,
is the parameter vector to be estimated from the observation X
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with probability density function (pdf) f(X|A) and g 1s the prior
pdf of A, then the MAP estimate is defined as the maximum of
the posterior pdf of A, g(A|z) &< F(X|X)g(A)

We attempt to adapt the means and the variances of the HMM
gaussians. The appropriate priors are gaussians and gamma dis-
tributions respectively, and the re-estimation formulae are given

by !
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where m and ¢° are the trained HMM parameters, o3 is the

prior variance of m, a and 3 are the parameters of the gamma
distribution such that 8/ = o, and the subscript M L is used to
denote the values estimated with a straightforward ML estimation.
The priors can be estimated by considering the HMM parameters
as random variables (RVs) and their values for each of the training
speakers as samples of these RVs. Accordingly, they can be
estimated with standard statistical procedures.

Extended MAP (EMAP:) EMAP explicitly introduces cor-
relations to the MAP re-estimation framework described above.
To describe EMAP we define m = [my---mx]T as the col-
lection of the gaussian means of a phoneme codebook, mo =
[mo, +-mo, )T the SI model value of m, and we assume that
the means of the codebook are correlated normal RVs with cor-
relation matrix Sp = E(m — mo)(m — mgo)T. Assuming that we
obtain independent observations for the means of the codebook
it can be shown that the re-estimation formula is given by

marap — mo = So(S + CS0)™ C(marr, — mo) (D
where masr = [mamer, - -mM;,x]T, S = diag(c3,---,0%), and
C =diag(c1, - - -, cx) with ¢; the adaptation EM count associated

with mean 1.

Class Tying: In a PTM HMM the triphones within a phoncme‘

are represented as a mixture of K gaussians RVs M;. We can
accordingly define an RV M to represent the phoneme itself,
as the average of the gaussians that model this phoneme, M =
Y ciMi/ 3, ci, with c; the trained EM count of RV M;. As
a linear combination of gaussian RVs M is also a gaussian RV,
and the same adaptation procedures used for the HMM gaussians.
The advantage in adapting the phoneme model independently is
twofold. First, there will be more samples for M than for any of
the individual M;s, hence the shift of M will be more robustly
estimated. As such, it can be used to smooth the shifts of the
individual gaussians of the phoneme codebook associated with
M. Second, when used together with EMAP, tying guarantees
that all the HMM gaussians will change, even when they have
no adaptation data.

2.2. The Adaptation Procedure

The adaptation procedure for supervised and unsupervised tasks
goes through the following steps:

VAl of the formulae to be presented assume that the dimensionality
of the observation space is 1, which of course is not true. Our system
however uses diagonal covariance gaussians, and all of the problems we
are dealing with are decomposed to many independent problems, one for
each dimension.
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. After an EM iteration on the adaptation data, obtain suffi-
cient statistics for the phoneme gaussians M* and the HMM
gaussians M,‘k, k= 1, ey, Nphoncmca-

. Estimate the EMAP shifts for the set of phoneme gaussians
Mk

. Estimate the EMAP shifts independently for each of the
phoneme codebooks

. Propagate the phoneme gaussian shifts to the HMM gaus-
sians:

2

‘k 3 ) k
Am; prrap = €Ami gaap + (1 — €)Amprrap

where Amf, rmap Tepresents the shift of a HMM gaussian

and Am%,, . p represents the shift of the phoneme model
associated with the gaussian in question.

Re-estimate the variances around the adapted means

For batch adaptation this procedure is applied once on the en-
rollment data. For incremental adaptation the procedure is applied
every sentence. In the latter case supervision for the EM iteration
of step 1 is provided by the recognizer output either as is (un-
supervised incremental adaptation) or after correcting the errors
(supervised incremental adaptation). '

3. INSTANTANEOUS ADAPTATION

Together with the batch and incremental adaptation we are cur-
rently exploring the feasibility of instantaneous adaptation tech-
niques, that is unsupervised adaptation techniques that (i) require
minimal amount of data — one sentence and, (ii) attempt to im-
prove recognition on the same data that is used to estimate the
adaptation transformation. We use the knowledge that this sen-
tence comes from the same speaker and it was uttered in a roughly
stationary environment. Hence we can assume that most of the
difference between the speaker in question and the recognition
model lies on the speaker spectral characteristics. Because the
adaptation data are very limited we constrain this transformation
to operate only on the phoneme level. For example, when we
adapt the codebook means for instantaneous adaptation we set €
in (2) to zero, forcing all the gaussians of a phoneme codebook
to share the shift that we estimated for the phoneme itself.

For instantaneous adaptation, in addition to EMAP re-
estimation, we are using a procedure based on a similar model to
that used in our previously reported Probabilistic Spectral Map-
ping (PSM) algorithm [4]. PSM models the difference between
the speaker and the trained model spectral spaces as a probabilis-
tic transformation of the gains of the gaussian mixtures (mixture
weights). We briefly describe how we can use the EM algorithm
to estimate the transformation, using a single sentence and the
alignment of this sentence to the trained model. The estimation
is based on the maximization of the joint likelihood of the ob-
served test speaker speech and the unobserved data of what the
model predicts a training speaker would have said.

During recognition we obtain the sequence of observations
Y = {y1...y7} and seek to find the state sequence S = {s;...s7}
that maximizes the probability of the observations. Without



adaptation we assume that the model p(y|s) is the same as the
trained model p(z|s). PSM introduces a channel that models
the difference between the training and test speakers. In the ab-
sence of the channel the model generates symbols according to
p(z|s). However, we observe these symbols through the speaker
channel p(y|z,s). So the equivalent HMM can be constructed,
p(yls) = Ezp(y,z|s) = Y _p(y,z|s)p(z|s) If we had aligned
triplets (z:, y¢, 3:) the channel would be simply estimated as

Rijk
2o etk

where nj is the number of observed triplets (z: =1,y: = 7,8¢ =
k). We can obtain these triplets only when we have a training
speaker utter the same sentence as the test speaker. But we have
only the test speaker sentence, so we have to represent what the
training speakers might have said by a random variable X. So
in this case the estimation procedure involves an EM iteration to
converge to a model that best characterizes the test speaker [6].

ply=jlz=di,s=k)=

The instantaneous adaptation procedure can be summarized as
follows:

1. Decode the sentence in question and obtain an alignment of
frames to phonemes.

. Estimate a phoneme dependent PSM and apply it to the
model’s mixture weights.

. Estimate an EMAP shift for each of the phoneme models,
then apply this shift to all gaussians associated with that
phoneme.

. Repeat the recognition.

4. EXPERIMENTAL RESULTS

To evaluate the adaptation techniques outlined in sections 2 and
3 we performed a series of experiments on various 5K word tests
of the ARPA Wall Street Journal (WSJ) corpus. We used the
BBN BYBLOS PTM speech recognizer that uses codebooks of
64 gaussians to model each of the 46 phonemes of the system.
In all our experiments separate models were obtained for male
and female speakers. These models were trained on the SI-284
portion of the corpus. -

4.1. Batch Adaptation

The first experiment for batch adaptation was to measure the con-
tribution of each of the adaptation components. This experiment
was performed on the 1993-H2-dev 2 set. An adaptation model
was estimated for each of the test speakers based on the 40 en-
rollment sentences that are provided with the test. The adapted
model was then used to rescore the SI model n-best [7]. The re-
sults are summarized in Table 1. The most important contributor
to the MAP gain is the adaptation of the means (12.3% reduction
in error rate if used alone), then the adaptation of the variances

2The naming convention used here for the test sets is jyear the test
was released;-jname of the test;-jpurpose of the test;. The purpose of
the test can be either dev (for development) or eval (for evaluation). For
example 1993-H2-dev means the development test released in 1993 for
the H2 test, which is an all purpose native speaker Sk word vocabulary
test.
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(6.1%), and then the adaptation of the mixture weights (3.9%).
We also note that EMAP adaptation is performing slightly bet-
ter than simple MAP (6.28% word error rate for EMAP versus
6.47% for MAP). We did not produce the same breakdown for the
non-native speakers yet. The only relative experiment we have
done so far is to evaluate if the adaptation of mixture weights
is helping more here than it helps for the natives, and indeed it
does.

Condition Word Error | Improvement
No adaptation 7.16%. -
MAP, mixture weights 6.88% 3.9%
MAP, variances 6.72% 6.1%
MAP, means 6.47% - 9.6%
EMAP, means 6.28% 12.3%
EMAP, means

+ MAP for variances 6.02% 15.9%
EMAP means,

+ MAP for variances

and mixture weights 5.96% 16.8%

Table 1: Breakdown of how much each component of the batch
adaptation helped the PTM system.The test set used here is the
1993-H2-dev (native speakers). For this experiment we are sim-
ply rescoring the SI n-best

Table 2 presents the improvement in performance for vari-
ous test sets when the adapted model is used during recognition
(and not only n-best rescoring). We note that for native speak-
ers (1994-S0-dev and 1994-S0-eval tests) a 23-28% reduction in
word error rate is realized. For the non-native speakers (1993-
$3-dev, 1994-53-dev and 1994-S3-eval) the gain is much bigger,
with the error rate being reduced by a factor of 2.5 to 3.5, depend-
ing on the test set. Also note that the difference in word error
rate between native and non-native speakers is reduced from a
factor of 2.5 to 5 before adaptation to less than a factor of 2 after
adaptation, which may be quite acceptable.

Word Error
Test set | No adaptation | Adaptation | Improvement
1994-S0-dev 7.5% 5.4% 28%
1994-50-eval 7.7% 5.9% 23%
1993-83-dev 35.6% 11.0% 70%
1994-S3-dev 30.9% 10.4% 67%
1994-S3-eval 24.7% 9.8% 60%

Table 2: Performance of the PTM system with and without batch
supervised adaptation on various test sets (the SO tests are on
native speakers and the S3 tests on non-natives.)

4.2. Incremental Adaptation

Similar to the batch adaptation experiments we tested our incre-
mental adaptation algorithm on both native and non-native speak-
ers. However, because the performance of incremental adaptation
improves with the more data presented and because the length of
the native and non-native speaker tests were different a straight-
forward comparison is not possible. It is also hard to present all
the aspects of an incremental adaptation (average error rate, error
rate as a function of the number of sentences seen, supervised vs.



unsupervised adaptation etc.) in the limited space of this paper.
Accordingly, we will restrict ourselves to outlines of our most
important conclusions instead of detailed results:

The performance improves by 40% after approximately 100
sentences for the native speakers and by a factor of 2 after
40 sentences for non-native speakers.

With incremental adaptation performance improves fast for
the first couple dozens of sentences, but the rate of improve-
ment is gradually slowed down. However, we did not see
the improvement in performance saturate, at least for tests
with a length of a 100 sentences.

The performance of unsupervised incremental adaptation is
only slightly worse than the performance of supervised in-
cremental adaptation.

The adapted model recognizes much faster that the SI model,
actually much more than the amount needed to compensate
for the computation introduced by the adaptation algorithm
itself.

4.3. Instantaneous Adaptation

Table 3 presents the results we have obtained so far with in-
stantaneous adaptation. The improvement for natives is expect-
edly small, since there is no significant difference between the
SI model and the test speakers, at least as far as the very con-
strained adaptation transformation we are using can detect. For
the non-native speakers, were the spectral characteristics are suf-
ficiently different on the phoneme level, instantaneous adaptation
gives a sizable gain. PSM instantaneous adaptation improved per-
formance by 16% over no adaptation and EMAP instantaneous
adaptation improved by 24%. When we used both techniques
simultaneously the reduction in word error rate was 29%. Note
however that the performance with instantaneous adaptation is
a factor of 2.5 worse that the performance we can achieve for
the same set with supervised batch adaptation on 40 enrollment
sentences.

Word Error
Condition 1994-S0-dev | 1993-s3-dev
- (natives) (non-natives)
No adaptation 7.7% 35.7%
PSM 7.6% 29.8%
EMAP 7.5% 27.2%
PSM+EMAP 7.5% 25.3%

Table 3: Performance of the PTM system with and without in-
stantaneous adaptation for natives and non-native speakers.

5. DISCUSSION

We have presented a framework for MAP adaptation of large
scale HMM speech recognizers. This framework, by taking ad-
vantage of correlations present among the system’s parameters
and by introducing various degrees of tying among them over-
comes a distinct disadvantage of MAP estimation, that of chang-
ing only parameters for which adaptation data are present, keep-
ing at the same time its asymptotic properties. We have eval-

679

uated our adaptation algorithm for batch and incremental adap-
tation with a Phonetically Tied Mixture (PTM) HMM and have
obtained very encouraging results for both native and (especially
for) non-native speakers of American English. Currently we are
working on applying the adaptation algorithm presented in more
complex continuous mixture HMM, were we have to adapt orders
of magnitude more parameters than the PTM system.

We have also touched on the issue of instantaneous adaptation.
We have shown that when there is a big difference between the
test speaker and the ST mode! used for recognition, a sizable gain
can be achieved by adapting the model based on a single sen-
tence and then repeating the recognition on the same sentence. It
will be interesting to see how instantaneous adaptation techniques
work together with incremental adaptation. We are also still look-
ing for a more appropriate set of features to adapt with instan-
taneous adaptation, features that are few enough to be estimated
robustly form a single (and usually misrecognized) sentence but
yet powerful enough to capture the different characteristics of a
new speaker.
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