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ABSTRACT

This paper describes a model of speech production based on
solving for acoustic wave propagation in the vocal tract us-
ing a finite-difference time-domain (FDTD) technique. This
FDTD technique was first developed by Yee and utilizes a
discretization scheme in which pressure and velocity com-
ponents are interleaved in both space and time. The specific
implementation of this model of speech production, includ-
ing discretization of the coupled acoustic wave equations,
boundary conditions, stability criteria, values of model con-
stants, and method of excitation, are presented in this pa-
per. The accuracy of the model is verified by comparing
the FDTD results to the theoretically expected results for a
well-known acoustics problem. The FDTD model of speech
production has been used in a variety of experiments, and
several results, including those that compare the use of sev-
eral common glottal models as excitation, are presented
here.

1. INTRODUCTION

Developing models of speech production has been an impor-
tant area of research for many years. The many and var-
ied applications of speech processing, including speech syn-
thesis, speech coding, and automatic speech recognition all

are dependent on understanding and modelling the mecha- .

nisms of speech production. Most current methods of mod-
elling speech production involve either directly analyzing
the acoustic speech waveform, which assumes a simplified
linear model, or solving the acoustic wave equation in a se-
ries of cylindrical tubes representing the vocal tract, which
assumes a simplified geometry. Although these models have
been highly successful for several years, the pace of new ad-
vances has been slow. Many researchers believe that the
single most important factor in making further progress in
speech processing is to improve the model, and therefore
researchers’ understanding, of speech production.

This paper will present a model of speech production
based on a numerical simulation of acoustic wave prop-
agation in the vocal tract. The model is based on solv-
ing for acoustic wave propagation using a finite-difference
time-domain (FDTD) technique in a geometry that accu-
rately represents the vocal tract shape. FDTD methods
such as the one used in this research inherently provide
several important advantages over current speech analysis
techniques. First, a FDTD solution provides full knowl-
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edge of the acoustic flow at every point in the vocal tract
for every time. Second, the finite-difference time-domain
method makes no assumption of linearity between the in-
put and the output (note that this is not true for frequency-
domain finite-difference methods). Finally, a numerical so-
lution such as the one described in this paper allows many
parameters such as the geometry of the vocal tract and the
excitation source to be altered easily.

This paper will develop an adaptation of Yee’s finite dif-
ference scheme [11], which has been used successfully in the
fields of electromagnetics and computational fluid dynam-
ics, to the problem of acoustic wave propagation in the vocal
tract. A brief description of the theory of speech produc-
tion upon which the model is based, along with a discus-
sion of the governing equations of acoustic wave propaga-
tion in the vocal tract, will be presented. The adaptation
of Yee’s finite-difference time-domain method to this model
of speech production will then be discussed. Issues such as
grid placement, boundary conditions, excitation and sta-
bility will be presented. In order to validate the accuracy
of the method, a rotationally-symmetric three-dimensional
unflanged cylinder will be analyzed, and the results will be
compared to the theoretical results. Some results of ana-
lyzing a two-dimensional vocal tract geometry taken from
x-ray data for a vowel using this model of speech production
will be presented.

2. THEORY

It is generally accepted that, in speech production, the vo-
cal tract acts as a variable-geometry acoustic resonator that
is excited at one end and that radiates from the other end.
The glottis acts to regulate the excitation from the lungs,
either opening and closing regularly to produce periodic
pulses of air, as in voiced speech, or allowing the pressure
from the lungs to pass through unimpeded as in unvoiced
speech. In unvoiced speech, the excitation of the vocal tract
occurs at some point past the glottis. In this case, a par-
tial or complete constriction in the vocal tract causes the
build-up of turbulent noise which is released when the con-
striction is eased. It is possible to have both voiced and
unvoiced excitations. The excitation is shaped by the reso-
nant cavities comprising the vocal tract, and the resultant
waveform is radiated from the lips and/or nose.

In traditional speech production models, several assump-
tions are made about the nature of acoustic wave propaga-
tion in and the geometry of the vocal tract. Generally, it
is assumed that there are no viscous or thermal losses, that
only small perturbations about the mean pressure occur,
and that only plane wave propagation can occur. Further-
more, the vocal tract is usually assumed to be a series of -
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contiguous rotationally-symmetric tubes of variable cross-
sectional area.

The equations that describe acoustic wave propagation
are derived from the equations of momentum and continu-
ity:

ou
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where @ is the gas particle velocity, comprised of velocity
components in each coordinate direction, p is the devia-
tion from ambient pressure, c is the speed of sound in the
medium, and & is the density of the gas at rest. - These
equations assume small perturbations from rest and negli-
gible viscosity.

In rectangular coordinates, these two equations can be
expanded to
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Similarly, in cylindrical coordinates, the two equations
can be expanded to:
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3. METHOD
3.1. Discretization of Differential Equations

The uniqueness of the model described in this paper is the
manner in which these equations are discretized and solved
for numerically, in the time-domain and in a geometry that
accurately represents the vocal tract. In a finite-difference
method, differential equations are usually discretized such
that a first derivative is approximated as a first difference.
In Yee’s finite-difference time-domain method, the coupled
equations in p and @ are discretized and solved numerically
using a space and time grid in which the samples are inter-
leaved. Yee’s method is sometimes called the “leap-frog”
method because of the way in which p and @ samples are
interleaved in both time and space by one-half of a grid cell.

A single three-dimensional rectangular grid cell is shown
in Figure 1. As can be seen, p is located in the center of each
cell, while the # components are each located in the center
of the appropriate cell face. The differential equations are
discretized as follows. In this notation, the supetscripts
refer to the location in space.

In rectangular coordinates,
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Figure 1. Three-dimensional rectangular grid cefl.

-1

Az
(9)

At So

At

— 6oc? (ui"“"""“ (@+.5) —ui > @+ -5))
Ax

Soc? w2k (n 4 5) — uli =3y 4 5)
0 Ay

i, k4.5 _ k=5
— foc? (u, (n+ .s)A w4+ .5)) (10)
Z

(p‘“ (n+1)-pHik (n)) _

Each @ component is dependent on the p value in both
the given space-cell and in the previous space-cell for the
previous time and on the respective # component in the
given space-cell for the previous time-step. Each p value is
dependent on the @ values in the given space-cell and the
adjacent space-cell for the current time and on the p value
in the given space-cell for the previous time-step. For each
time-step, all space values are calculated.

A similar, though more complex, discretization can be
made for the acoustic wave equations in cylindrical coor-
dinates. Because of the manner in which the pressure and
velocity components are interleaved in space, .i is impor-
tant to note that the discretized r in these equations has a
different value (i.e., the respective distance from the r axis)
depending on the component value being calculated.

3.2. Model Specifications

In addition to discretizing the differential equations, there
are several issues that must be addressed in implementing
a finite-difference solution. These issues include boundary
conditions within the geometry of the problem, boundary
conditions that substitute for the infinite space outside of
a given geometry, stability criteria and the values of con-
stants, and excitation of the geometry. This section will
discuss briefly each of these issues in terms of the imple-
mentation of this model of speech production.

3.2.1. Boundary Conditions

There are two types of boundary conditions that must be
specified in a numerical model. The first is the definition
of the boundaries of the geometry that is being modelled.
In a model of speech production, this means defining the
boundary conditions at the vocal tract walls and at the
glottis. In all of the examples considered in this paper, the
vocal tract walls will be assumed to be rigid (currently, a
formulation of the model is being developed that allows for
yielding walls). That is, the normal velocity at each wall
boundary is assumed to be zero. The boundary condition
at the glottis involves the injection of the excitation source,
which will be discussed later in this section.
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The second type of boundary condition that must be de-
fined are the boundary conditions outside of the model ge-
ometry. In order to simulate the infinite space outside the
lips with a finite numerical grid, an Absorbing Boundary
Condition (ABC) is used to truncate the grid at the outer
edges of the computational space. There are a variety of
ABCs that have been proposed. In the model of speech pro-
duction developed here, it is possible to extend the compu-
tational space well beyond the end of the vocal tract model.
Therefore, a relatively simple ABC has been implemented
to truncate the numerical grid space. The boundary cell is
simply assigned the value of the cell one previous space cell
and two previous time-steps [8]. :

3.2.2. Stability Criterion

In order for the solution to be stable, the space and
time grid increments must be chosen to satisfy the well-
known “domain of dependence condition.” Also called the
“Courant-Friedrichs-Lewy” condition, in a two-dimensional
model, the grid increments must be selected to satisfy

N P — (11)
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With Az equal to Ay, selecting the quantity ‘fz' equal to
0.5 satisfies this condition.
In this model of speech production, the two-dimensional
grid size was selected as Az = 0.125 cm and Ay = 0.125
cm. The constant values used in this model are:

FAY 0.125 cm
Ay = 0.125 cm
¢ = 353.1442 m/sec
b = 0.15 kg/m?

Note that because the average temperature inside the
mouth is greater than 30°C, ¢, the speed of sound, is calcu-
lated to be 353.1445 m/sec (assuming a temperature inside
the mouth of 37°C). The sampling rate, 1/ At, is calculated
to be 565.031 kHz. Clearly, this model requires a high level
of computational intensity.

3.2.8. Ezcitation

The vocal tract model is excited by assuming that the
normal velocity at the glottis is equal to the volume ve-
locity of a known glottal excitation volume velocity pulse.
The glottal opening is assumed to be approximately 3/8 cm
long [6]. Therefore, uy in three adjacent grids cells at the
location of the glottis is set equal to the value of a known
glottal volume velocity pulse at successive time samples. A
two-dimensional grid for the Russian vowel /e/ is shown in
Figure 4. The three grid cells in which the excitation is
injected are annotated. It is therefore possible to use any
one of several glottal models to generate the glottal volume
velocity with which the vocal tract model is excited.

4. RESULTS

Having defined the current model specifications, the re-
mainder of this paper is devoted to presenting several results
obtained using this model. The first part of this section will
present a comparison of the model results to the theoretical
results for a well-known acoustics problem. The second part
of this section will present the results of having modelled
vowel production with the two-dimensional finite difference
grid model.

. ka
Figure 2. Comparison of | R|, finite-difference time-domain
solution and theoretical solution.
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Figure 3. Comparison of l/a, finite-difference time-domain
solution and theoretical solution.

4.1. Theoretical Verification

The traditional method of verifying the accuracy of a nu-
merical model is to select a problem with a well-known the-
oretical solution and to compare the results of using the nu-
merical model to the theoretically expected results. For this
paper, a three-dimensional unflanged, open-ended circular
cylinder was modelled and excited with a Gaussian pulse.
The reflection coefficient was calculated from the numeri-
cal solution of the propagation of the Gaussian pulse in the
cylinder over time and compared to the theoretically de-
rived reflection coefficent [7]. The comparison of the exper-
imentally calculated and the theoretically expected values
|R| and l/a versus ka (where k is the wave number, 2x/A,
and a is the radius of the cylinder) are shown in Figures 2
and 3. As can be seen, the agreement between the finite
difference and the theoretical results is excellent. The accu-
racy of this finite difference time domain model is therefore
verified.

4.2. Vocal Tract Models

Several experiments have been performed using the finite
difference model of speech production. The production of
several vowels has been modelled using two-dimensional
grids based on published x-ray data [10]. One such grid,

Figure 4. Two-dimensional rectangular grid, /e/.
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mea- | Inv | Beta ‘Rose | Rose

sured | filt fen trig | poly

1 (Hz) 512 500 500 500 500 500
2 (Hz) 1600 | 1535 | 1535 | 1535 | 1535 | 1535
3 (Hz) [ 2320 | 2345 | 2345 | 2345 | 2345 | 2345
F4 (Hz) | 3379 | 3603 | 3621 | 3586 | 3586 | 3586

Table 1. Measured and calculated formant locations.

100

Figure 5. Comparison of the magnitude of the resulting
speech spectra given five different excitations.

for the Russian vowel /e/ is shown in Figure 4. One of
the many experiments that has been performed using the
model was an experiment in which the model was excited
with five different, common glottal excitations.

The FDTD model was excited with five different volume
velocity pulses: an inverse-filtered glottal waveform, a nor-
mal beta function glottal model, a Rosenberg trigonomet-
ric glottal model pulse [9], a Rosenberg polynomial glottal
model pulse [9], and a Hedelin glottal model pulse [5]. These
are shown in Figure 5. The model parameters for these last
four were determined by performing a least-squares best-
fit to the inverse-filtered glottal waveform. The normal
beta function glottal model is one that was developed in
previous research to model various styles of glottal excita-
tion {2] [3] [4].

A comparison of the magnitude of the spectrum of the
resulting speech waveform is shown in Figure 5. The speech
waveform was taken as tlie pressure at the point (290,41),
-approximately 28 cm in front of the lips.

From the resulting speech waveforms for each of the
five excitations, the formant locations were determined and
compared to each other and to the measured formant loca-
tions for this vocal tract shape. The formant locations are
shown in Table 1, along with the measured formants for this
vocal tract shape [10]. The resonance locations produced
using this new model of speech production are extremely
accurate. In fact, for the first three formants, the percent
error between the measured and the model formant loca-
tions was less than 5%. For the fourth formant, the percent
error was around 6.5%. As is observed in the plot of the
speech spectra, all of the excitations resulted in largely the
same spectral content.

Generally, the results for this model of speech production
are viewed as movies. Pressure and velocity are observed
for the entire grid versus time. Several animated versions
of results from several different modelling experiments will
be shown at the conference. Additionally, the model has re-
cently been expanded to three dimensions. MRI data that
has been collected as part of this project will also be avail-
able at the conference.
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5. CONCLUSION

A model of speech production based on a finite-difference
time-domain solution of wave propagation in the vocal tract
has been presented in this paper. The model is based on
a “leap-frog” FDTD method, first developed by Yee [11],
in which the pressure and velocity components are inter-
leaved in both time and space. The discretization of the
coupled acoustic wave equations for this FDTD implemen-
tation were presented. Other specifics of the model, includ-
ing boundary conditions, stability criteria, constant values,
and model excitation were discussed. The accuracy of this
FDTD model was confirmed by modelling a well-known
acoustics problem, reflection in an open-ended, circular
cylinder. The results calculated using the FDTD model
were extremely accurate when compared to the theoretical
solution. Finally, the geometry that was used to model a
Russian vowel, /e/, was presented. The results of exciting
the model with five common glottal volume velocity pulses,
along with the pressure versus time for a given vowel model
and a given excitation, were shown. The primary method
of interpreting the results of this model is with animated
versions of the pressure and velocity. Examples of these
will be shown at the conference.
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