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ABSTRACT

This paper proposes an algorithm for speech parameter
generation from HMMs which include the dynamic fea-
tures. The performance of speech recognition based on
HMMs has been improved by introducing the dynamic
features of speech. Thus we surmise that, if there is a
method for speech parameter generation from HMMs
which include the dynamic features, it will be useful for
speech synthesis by rule. It is shown that the parame-
ter generation from HMMs using the dynamic features
results in searching for the optimum state sequence and
solving a set of linear equations for each possible state
sequence. We derive a fast algorithm for the solution
by the analogy of the RLS algorithm for adaptive fil-
tering. We also show the effect of incorporating the
dynamic features by an example of speech parameter
generation.

1. INTRODUCTION

The hidden Markov models (HMMs) can model se-
quences of speech spectra by well-defined algorithms,
and have successfully been applied to speech recog-
nition systems. From these facts, we surmise that,
if there is a method for speech parameter generation
from HMMs, it will be useful for speech synthesis by
rule. For example, it is feasible to synthesize speech
with various voice quality by using speaker adaptation
technique in HMM-based speech recognition, and syn-
thesis units can be selected automatically based on the
model clustering and splitting methods used in HMM-
based speech recognition. In addition, it is expected
that the method is applicable to speech enhancement,
voice quality conversion, etc.

From this point of view, this paper proposes an al-
gorithm for speech parameter generation from continu-
ous HMMs which include the dynamic features [1]. It is
shown that the parameter generation from HMMs us-
ing the dynamic features results in searching for the op-
timum state sequence and solving a set of linear equa-
tions for each possible state sequence. We derive a fast
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algorithm for the solution by the analogy of the RLS
algorithm [2] for adaptive filtering.

We show the effect of incorporating the dynamic
features by an example of speech parameter generation
in the case where the speech parameter consists of mel-
cepstrum and delta mel-cepstrum. The performance of
speech recognition based on HMMs is improved by in-
troducing the dynamic features of speech. Similarly,
it is shown that the dynamic feature plays an impor-
tant role in speech parameter generation; without the
dynamic features the generated parameter sequence be-
comes a sequence of the mean vectors independently of
contexts.

2. PROBLEM

Let O = {01, 02, ..., or} be the vector sequence of
speech parameterand q = {q1, g2, ..., gr} be the state
sequence of an HMM A. In this paper, we assume that
the vector of speech parameter o, at frame ¢ consists of
the static feature vector ¢, (e.g., cepstral coefficients)
and the dynamic feature vector Ac, (e.g., delta cepstral
coefficients), that is,

oy = {cy, Acy} (1)

where
c. = [e(1), ¢(2),

oty (M) (2)

Acy = [Ac(1), Ac(2), ..., Ac(M)]) (3)
and Ac; is defined as
L
AC; = Z 'LU(Z) Ctti. (4)
i=-L

To simplify the discussion, we assume that ¢ and Ac,
are statistically independent.
The problem is to determine the parameter sequence

c=|c}, ¢}, ..., c4]) which maximizes
PO[A]= 3 Pla, O] (5)
all q



for a given HMM A. However, since the problem is
difficult to solve, we consider the optimum sequence in
a similar manner of the Viterbi algorithm, that is, we
maximize

(6)
with respect to ¢. Since we have to determine q and

c simultaneously, in contrast to the Viterbi algorithm
the dynamic programming methods cannot be used.

PlO|A] = m(zleP[q, O]

3. SOLUTION OF THE PROBLEM

To solve the problem, first we consider maximizing
P[q, O| A] for a given state sequence q with respect
to c. The probability P[q, O |}] is written as
Plq, O|A] = Pla|A]- P[O]q, A]. (M
For given q, maximizing P[q, O |A] with respect to ¢
is equivalent to maximizing P[O |q, A] with respect to
¢ because the probability P[q|A] does not depend on
O. The probability P[O|q, A] is written by
P[O]q, A] = by, (01) by, (02) - byz(0r).  (8)
Without loss of generality we assume that the distribu-
tions of {by,(0,)} are single mixture Gaussian because
mixture components can be considered to be a special
form of sub-state in which the transition probabilities
are the mixture weitghts. Therefore, the output prob-
ability at state j is given by
bj(0:) = N(cy; pj, Uj) - N(Acy; Ap;, AU ) (9)
where p£; and U; are the M-by-1 mean vector and the
M-by-M covariance matrix of ¢; at state j, respec-
tively, Ap; and AUj; are those of Ac,, respectively,
and N( - ; p, U) denotes the Gaussian distribution.
Thus, the logarithm of P[O|q, A] is written as

log P[O|q, A] = —%(c - 1)U (c - p)

—%(Wc - Ap) AU (We - Ap)

T T
1
—%E logIUq‘|——2- E log|AU,, | — TMlog 2w (10)
t=1

t=1

where
!
i= (s By oo b ] (11)
U = diag[U,,, Uy, ..., Ug,] (12)
Ap = [Ap), Apl, ..., Apl ] (13)
AU = diag{AU,,, AU, ..., AU, ] (14)
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[ w(0)Iy w(L)Ip 0 ]
: w(0)I
W= | wl)y w(L)Iy
o w(L)Iy w(0)La ]
(15)

and Iy denotes the M-by-M identity matrix. We as-
sume that
ct=0pymq, t=-L,...,-2, -1, T+1,T+2, ..., T+L.
' (16)

where 0js denotes the M-by-1 zero vector.

To maximize (10) with respect to c, by setting
Olog P[O|q, A]/@c = Orp, we obtain a set of equa-
tions

Rc=r 17

where
R=U"T1+WAU'wW (18)
r=U""u+WAU Au. (19)

For direct solution of (17), we need O(T3M?) opera-
tions on the assumption that M, L « T. When U,
and AU, are diagonal, it becomes O(T®M). To obtain
q and ¢ which maiximize P[q, O| )], we have to solve
(17) for every possible state sequence. Fortunately, by
using special properties of (17), we can derive a fast
algorithm for determination of q and c as follows.

Let us consider replacing the values of the mean vec-
tor and covariance matrix, {Ap.q‘, AU, }, at a frame
t with {Ap;,, AU; }. The corresponding set of equa-
tions can be written as

Ré=+ (20)
where
R = R+ wDw' (21)
F=r+wd (22)
D = AU - AU! (23)
-1 -
d = AUG'Ap;, — AU Ap, (24)
w=[0,...,0, w(-L),..., w(0), ..., w(L),0,..., 0.
1 t—1 t t+1L T
(25)

It can be seen that the relation of (21), (22) is similar to
the time update property of the set of equations for the
RLS adaptive filtering [2]. Consequently, we can derive
a fast algorithm which obtaines & from c recursively
by the analogy of the derivation of the standard RLS
algorithm, i.e., the application of the matrix inversion



Table 1: Summary of the proposed algorithm.

e Set D, d, w by (23)-(25)
to replace {Ap,,, AU, } with {Ap, , AU, }

e Set D, d, w by (26)-(28)
to replace {p.q', Uq‘} with {”’év U, }

Substitue ¢ and P obtained by the previous iteration
to ¢ and P, respectively, and calculate

=wpP

=D !4 xw
= Pwxk™!
=P-knr

=c+k(D7!d - w'c)

o O x x A

lemma. To replace {x,,, Uq‘} with {p,, Ug, } we can
use following equations instead of equations (23)~(25):

D=U;'-U;! (26)

d=Uglu, - Ul (27)

w=[0,...,0,1,0,...,0]. (28)
1 t T

The algorithm is summarized in Table 1. It is noted
that P = R~!. The computational complexity of the
algorithm becomes O(T?M3). When U, and AU, are
diagonal, the computational complexity is reduced to
O(T?M). By using the recursive algorithm, we can
search for the optimum state sequence keeping ¢ opti-
mal in the sense that P[O|q, A] is maximized with
respect to c. For each state sequence, we can use
the recursive algorithm instead of solving (17) directly.
Therefore the total computational complexity is signif-
icantly reduced.

The overall procedure for parameter generation from
HMMs is summarized as follows:

1. Solve the set of equations (17) for an initial state
sequence, and obtain ¢ and P,

2. Replace the state ¢, of a frame t with gs according
to a certain strategy, and obtain ¢ and P by using
the algorithm shown in Table 1.

3. If the value of log P[q, O| ] is not smaller than
that of log P[q, O| A}, discard the replacement.

4. Repeat 2 and 3 until a certain condition is satis-
fied.

For the initail state sequence, (17) can be solved as
follows. On the assumption that Ap, = Op and

AUy, = Opxp for t = 1,2, ..., T, the solution of
(17) is given as ¢ = p and P = U. Next, by putting
the values of Ap, and AU, back with the original
value for ¢t = 1, 2, ..., T using the algorithm T times,
we can obtain ¢ and P for the initail state sequence.

The initial state sequence should be given appro-
priately; a reasonable way is to select the initial state
sequence which maximizes P{q|\]. For a given T, we
can obtain such an initial state sequence by using the
Viterbi algorithm. Although the above procedure does
not search every possible state sequence, since the ini-
tial state sequence should be close to the optimum state
sequence, we can obtain an optimal or sub-optimal so-
lution without a large number of iteration of the pro-
posed algorithm. '

The parameter generation procedure discussed in
this paper can be straightforwardly extended to the
version for mixture HMMSs. It is also noted that we can
easily extend the proposed algorithm to include delta-
delta parameters and allow multiple data streams.

4. SPEECH SYNTHESIS BASED ON HMM

We suppose that mel-cepstrum is used as speech pa-
rameter. However the LPC-derived mel-cepstrum is
not proper for synthesizing speech because it does not
represent the original spectrum obtained by the LPC
analysis. We have already proposed a speech analysis
method (3] and a speech synthesis method [4] in which
speech spectrum is represented by mel-cepstrum con-
sistently. This analysis/synthesis method is suitable
for the method proposed in this paper.

To synthesize speech, we require pitch information
besides spectral information. Consequently, speech pa-
rameters in the proposed algorithm should include pitch
information of speech signal. Although pitch contour
generation methods based on HMMs have been pro-
posed [5], [6], they have not used the dynamic features
to generate pitch contours.

To generate high quality speech we have to investi-
gate the issues such as the choice of model size (num-
ber of states), choice of output distribution (number
of mixtures, diagonal or full covariance matrix), and
choice of units of model (phoneme or syllable, context-
dependent or independent). These choices must be
made from the viewpoint that differs from that of speech
recognition.

In the conventional HMMs the probability of state
occupancy decreases exponentially with time. This
type of state duration probability does not provide an
adequate representation of the temporal structure of
speech. To control temporal structure appropriately,
we should use HMMs with state duration models.
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5. EXAMPLE

A simple experiment of speech parameter generation
was carried out using the ATR 5240 Japanese word
data base. Only data from one speaker (speaker MAU)
was used. We used 3 different phoneme models a, i,
o plus an additional silence model sil, i.e., 4 mod-
els in all. Assuming an unreal language which consists
of 3 phonemes /a/, /i/, /o/, we used only segments
whose contexts are one of /a/, /if, /o/, /sil/ for the
training. The type of HMM used was a continuous
Gaussian single mixture model with no explicit dura-
tion modeling. All models were 3-state left to right
models with no skips. All feature vectors comprised of
13 mel-cepstral coefficients and 13 delta mel-cepstral
coefficients. Both mel-cepstral and delta mel-cepstral
coefficients included Oth coefficients. Mel-cepstral co-
efficients were obtained by the 12th order mel-cepstral
analysis. The signal was windowed by a 25.6ms Black-
man window with a 5ms shift. The state durations d;
at state j were estimated from self-transition proba-
bility a;; as d; = 1/(1 - a; ;), and the search for the
optimum state sequence was not carried out in this ex-
ample.

Fig. 1 shows the spectra calculated from the mel-
cepstral coefficients generated by an HMM, which is
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Figure 1: An example of parameter generation from an
HMM composed by concatenation of phoneme models;
sil, a, 1, sil, (a) without dynamic feature, and (b)
with dynamic feature.

composed by concatenation of phoneme models; sil,
a, i, sil. Without the dynamic features, the param-
eter sequence which maximizes P[q, O|A] becomes a
sequence of the mean vectors; Bgys Bgpy «ovy Bgr (see
Fig. 1(a)). On the other hand, Fig. 1(b) shows that an
appropriate parameter sequence is generated by using
the static and dynamic features. At the first and last
states of each phoneme model, the variances of static
and dynamic features are relatively large, the generated
speech spectra are modified appropriately according to
the context of each model. At middle states, since
static and dynamic features have small variances and
the mean vectors of dynamic feature are nearly equal
to zero, the generated speech spectra have forms cor-
responding to the mean vectors of static feature. From
the example, it is seen that incorporating the dynamic
features is essential to generate speech parameters from
HMMs, and the algorithm is expected to be useful for
concatenation of synthesis units in speech synthesis by
rule.

6. CONCLUSION

We have proposed an algorithm for speech parameter
generation from HMMs using the dynamic features. It
is expected that the algorithm is useful for speech syn-
thesis by rule, speech enhancement, voice conversion,
etc. Implementation of a speech synthesis system is
our future work. It can develop to a speech synthesis
system by rule which can imitate various voice quali-
ties and express emotions. Further reduction of com-
putational complexity of the algorithm is also a future
problem.
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