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ABSTRACT

This paper presents a new approach to speech synthesis
which uses a set of decision tree state clustered triphone
HMMs to automatically segment a single speaker speech
database into sub-word units suitable for use in a syn-
thesiser. Parameters are then obtained for each of these
sub-word units from the segmented database, enabling a
basic synthesis system to be constructed. This automatic
generation of synthesis parameters means that the system
can easily be retrained on a new speaker, whose voice it
then mimics. It also means that a very large number of
sub-word units can be used, which enables more precise
context modelling than was previously possible.

1. INTRODUCTION

This paper introduces a new approach to speech synthesis
which uses triphone HMMs to segment a speech database
into sub-word units. The system is completely automatic,
and requires about 15 hours CPU time on an HP735-99
to convert one hour of single speaker speech into the pa-
rameters necessary to drive a synthesiser. The synthesised
speech then mimics the voice of the speaker used to record
the database.

There have been a number of previous attempts to use
HMMs for speech synthesis, [1]- [3]. These differed from the
current approach in that they used a single large HMM with
64 to 256 states to model all speech events. Synthesis from
phonemes was only possible in [3], where another discrete
HMM was used to calculate the most likely state sequence
through the first HMM given the phoneme string.

The current system is made possible due to recent ad-
vances in speech recognition technology [4], [5]. It uses a
set of cross word triphone HMMs, whose states are clus-
tered using a set of automatically generated decision trees.
These trees enable HMMs to be constructed for all possible
triphones, many of which do not occur in the training data.
Synthesis from triphones is therefore possible using the clus-
tered states of the set of HMMs as the sub-word units. The
automation of the system means that a very large number
of sub-word units can be used in synthesis. With a 45 sym-
bol phone set, approximately 90,000 triphones are possible.
In current systems these triphones typically share 6,000 to
10,000 clustered states, meaning that this number of sub-
word units are used in synthesis. This compares to about
2,000 sub-word units for a diphone system using the same
phone set. This large number of sub-word units, and the
context sensitive framework into which they fit enables more
precise context modelling than was previously possible, and
should lead to greater naturalness in the synthesised speech.

The automation of the system also means that the sys-
tem can be easily retrained to produce any desired voice,
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provided training data can be obtained. The acquisition of

specific new voices using traditional speech synthesis sys-
tems, if it is possible at all, is a very laborious process. In
rule based systems, such as DECtalk, a large number of
voice design parameters can be altered to change the voice.
However, which settings to use to get a particular voice
are far from obvious, [6], and producing exactly the voice
required may not be possible. More recently diphone syn-
thesis has been successful [7]. Here limited voice transfor-
mation can be achieved by scaling the formant frequencies,
and altering the average pitch level. Obtaining a specific
new voice is possible by preparing a new diphone dictio-
nary using speech of the desired voice. However, this is a
lengthy process involving manually splicing diphones from
specially prepared carrier words and sentences [8].

2. HMM CONSTRUCTION

Initially a pronunciation dictionary and word level tran-
scriptions are used to create a phone level transcription for
each sentence in the training database. These transcrip-
tions are then used to train a set of monophone models.
These models are then cloned to produce a triphone model
for every distinct triphone in the training data. The tran-
sition matrix remains tied across all the triphones of each
base phone. The triphone models are then re-estimated.

For each set of triphones derived from the same base
phone, corresponding states are clustered. This is neces-
sary since there are usually too few occurrences of many
of the triphones in the training data to properly estimate
a Gaussian distribution for each of the model states. The
clustering technique used also enables the construction of
triphone models not present in the training data.

The decision trees that perform the clustering are con-
structed automatically using a large list of questions con-
cerning immediate phonetic context, and two clustering pa-
rameters. A tree is built by asking every question at each
terminal node in the tree, and splitting each node using
the question which gives the largest increase in the log-
likelihood of the data being generated from the tree, using a
single Gaussian distribution to model the data at each node.
The two clustering parameters specify the minimum npum-
ber of frames of speech that must be assigned to each node,
and the minimum increase in log-likelihood which must be
achieved for a node to be split. The clustering procedure
continues until these minima are reached. The final termi-
nal nodes form the clustered states for that tree.

The decision trees are then used to calculate which clus-
tered states to use to construct HMMs for all the possi-
ble triphones not present in the training data. Finally the
state-clustered models are re-estimated. A more detailed
description of the construction of decision tree state clus-
tered HMMs is given in [5]
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_ The result of this procedure is a list of about 90,000 log-
ical HMMs which typically share 6,000 to 10,000 clustered
states, each of which is modelled using a single Gaussian
distribution. Gaussian mixture distributions are not used
in the current system since this would require more train-
ing data per state, and it is desirable to keep the amount
of training data required to a minimum. A single Gaussian
is considered to be adequate since the models are only used
for alignment, not recognition, and the speech from only a
single speaker is modelled.

Finally, the training data is aligned to the state-clustered
models, producing label files of clustered state name against
time. These label files are then used by the rest of the
system to obtain the synthesis parameters.

3. OBTAINING SYNTHESIS PARAMETERS

All the occurrences of a particular clustered state in the
label files produced above are pooled and the average du-
ration and the standard deviation of the duration for that
state are found. All the speech labelled as belonging to a
particular clustered state is pooled to estimate the average
energy per sample, the average zero crossing rate and the
linear prediction (LP) coefficients for that state.

The average durations are, of course, based on fluent nat-
ural speech, which tends to be quite fast. Speech synthe-
sised using only those durations is often too fast, and dif-
ficult to understand. Therefore each state is synthesised
for an amount of time equal to the average duration plus
a scaling factor multiplied by the standard deviation of the
duration. This ensures that when the duration of an utter-
ance is increased, states whose durations are most variable
are stretched the most, and states whose durations are least
variable are stretched the least.

When a state is being synthesised the average zero
crossing rate for that state is thresholded to give a
voiced /unvoiced decision to determine the excitation sig-
nal to be used, and each pitch pulse synthesised is scaled
so that its average energy per sample matches the average
energy per sample of that state.

Several methods for estimating the linear prediction co-
efficients have been investigated, and results from two of
these, the P-method and the [-method, are presented in
the next section.

The P-method pools all the speech labelled as belong-
ing to a particular clustered state. A single autocorrelation
vector is calculated from this pool, from which the LP coef-
ficients are obtained. This can be shown to be the optimal
way of finding the LP coefficients from more than one speech
segment.

All other methods investigated involved selecting one par-
ticular piece of waveform to represent each clustered state.
This is done principally to enable the possible future use of
the PSOLA synthesis scheme, [9]. PSOLA works directly
with the sub-word unit waveforms, and would be used in
the system in place of the current LP scheme. This de-
velopment could bring a substantial improvement to the
synthesised voice quality in the future.

The F-method considers every frame that lies within the
regions marked as belonging to a particular clustered state
as possible candidates. The best frame is chosen by calcu-
lating the probability density of each frame’s MFCC vector
using the single Gaussian associated with each state. A
25ms Hamming window centred on the centre of the most
probable frame is then used to calculate the LP coefficients.
Occasionally frames are picked which are not good repre-
sentations of a state, and this results in an audible glitch
in the synthesised speech. The C-method is similar to the
F-method, except that only the frames at the centre of each
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Av. Clust.
frame | states | Clustering | speech | states P
rate per Parameters per per rank
(ms) | model state | model
occ. AL (ms) posn.
10 3 25 50 561 2139 10
6 3 25 50 404 2966 4
6 3 42 0 573 2092 3
6 3 42 84 591 2030 1
6 3 42 168 883 1358 5
6 3 64 128 886 1354 2
6 3 128 256 1879 638 6
6 5 1 1 92 7843 12
6 5 5 10 143 5042 11
6 5 25 25 348 2066 8
6 5 25 50 350 2058 9
6 5 42 84 534 1348 7

Table 1. Columns 1-3 give the control parameters used in each
experiment, columns 4 & 5 give the resulting system statistics,
and column 6 gives the rank order of the performance of the
systems using the P-method.

occurrence of each clustered state are considered as candi-
dates. This method was tried in the hope that restricting
the search in this way, ensuring that speech is not chosen
from the boundary regions of a state occurrence, would give
better results. In fact the results of the F-method and C-
method are almost identical.

The I-method does not use the Gaussian distribution as-
sociated with each state. Instead a probabilistic distance
measure similar to the Itakura-Saito distance is used. The
speech in a 25ms frame at the centre of each state occur-
rence is compared to the P-method LP vector, and the
speech from the best frame used to calculate the final LP
coefficients. The I-method substantially outperforms both
the C-method and the F-method.

4. EXPERIMENTAL RESULTS

One hour of training data was recorded from a single
speaker at a sampling rate of 16kHz. This data was then
pre-emphasised, Hamming windowed with 25ms frames,
and coded into MFCCs with energy, deltas and accelera-
tions, to give a 39 dimensional feature vector. Originally 3
state models were used with a 10ms frame rate. The left
to right nature of the models results in a minimum model
duration of 30ms. Later 5 state models were introduced
in an effort to achieve better time resolution. To keep the
minimum model duration at 30ms, the data was re-coded
with a 6ms frame rate. A 20th order LP filter was used to
characterise each clustered state. The dictionary used was
a 45 symbol phone set development version of the British
English Example Pronunciations dictionary currently being
constructed at CUED.

The details of the different system configurations tested
are given in Table 1. The first three columns of the table
refer to the control parameters of each experiment. These
are the frame rate in milliseconds, the number of states per
model, and the minimum occupation and minimum change
in log-likelihood clustering parameters. The fourth column
gives the average amount of speech (in milliseconds) pooled
into each clustered state. Note that the minimum amount
of speech is given by the minimum occupation clustering
parameter multiplied by the frame rate. The fifth column
gives the average number of clustered states per model posi-
tion. Finally the sixth column gives an informal impression
of the rank order of the quality of the P-method results.



System Error rate (%)
Natural speech 0.7
Resynthesised natural speech 3.3
rank-1 P-method synthesis 33.0
rank-7 P-method synthesis 34.0
rank-1 I-method synthesis 37.3
DECtalk 1.8, Paul 3.25
MITalk-79 7.00
Amiga SoftVoice 12.25
Votrax Type’n’Talk 27.44
Street Electronics Echo 35.56

Table 2. Modified Rhyme Test results for various synthesis
systéems and natural speech, including results from [10] for
comparison.

The two configurations ranked bottom in Table 1 per-
formed considerably less well than the others. This was due
to there being an insufficient amount of speech associated
with each state to properly estimate a Gaussian distribu-
tion. The audible differences between the other configura-
tions in the table were small, and the rank order assigned
to them is not very precise. Configurations which sounded
smoother, with less artifacts, were ranked higher. The best
results were achieved using 3 state models with 6ms frame
rate data. Better performance was obtained by having at
least an average of 500ms of speech per clustered state, and
less than 1,000 clustered states per model position seemed
to be detrimental to performance.

Closed response Modified Rhyme Tests (MRT) were car-
ried out using the methods described in [10], and the
- wordlists given in [11]. Only six different subjects were
used to evaluate each type of speech in the current pre-
liminary tests, compared with seventy-two in [10]. Tests
were conducted to evaluate the performance of both the
P-method and I-method versions of the top ranked config-
uration in the 3-states-per-model group in Table 1, and the
P-method version of the top ranked configuration in the 5-
states-per-model group. Tests were also carried out for nat-
ural speech, and resynthesised natural speech. The latter
was obtained using standard autocorrelation method LPC
techniques over 25ms frames at a 6ms frame rate, resyn-
thesising on a monotone, and is the best that the current
system can hope to achieve. Table 2 presents the results
from the current tests, and also some of the results from
[10] for comparison. Further analysis of the test results re-
vealed that over 70% of the errors in the synthesised speech
tested were due to poorly synthesised plosives.

To illustrate the speech generated by the system, Fig-
ure 1 shows wideband spectrograms of the sentence frag-
ment “vast Atlantic”, taken from the synthesised utterance
“When a sailor in a small craft faces the might of the vast
Atlantic Ocean today.” Figure la used the P-method, and
Figure 1b the I-method. The synthesised speech in both
spectrograms was generated using the best system configu-
ration in Table 1. Figure lc is resynthesised natural speech,
generated as described above, and is included for compar-
1son as it is the best that the current system can hope to
achieve. Figure 1d is natural speech.

5. DISCUSSION

HMMs assume that the speech signal can be modelled as
piece-wise constant. The effect of this assumption on the
synthesised speech can be seen in Figure 1. Here the for-
mants remain constant for up to seven pitch pulses at a
time, after which they jump to another constant position.
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{a) Synthesis using the P-method

,3) :

(c) Resynthesised natural speech

(d) Natural speech

Figure 1. Wideband spectrograms of the sentence fragment
“vast Atlantic”.



Such jumps could cause glitches m the synthesised speech,
but with current systems none can be heard. Smoothing out
these jumps makes a barely perceptible change to the speech
quality. The context dependent structure of the models
seems to have ensured that the formant jumps are so small
that they are not noticeable.

The overall sound of the synthesised speech when syn-
thesising sentence length material is very similar to that
of resynthesised natural speech. The durations are par-
ticularly good, as can be seen from Figure 1. The MRTs
revealed that the system has problems in synthesising plo-
sives, and this can also be seen in Figure 1. The final /t/
of “Atlantic” is synthesised well. However the /k/ of “At-
lantic” suffers from a voicing error in its middle state, and
the first /t/ of “Atlantic” and the /t/ of “vast” do not con-
tain the required closures. :

Examination of the database has revealed two phenom-
ena likely to be largely responsible for the poor performance
of the system when synthesising plosives. Firstly, it was dis-
covered that some plosives specified in the phone level tran-
scriptions of each sentence in the database were either par-
tially or completely missing from the speech of the database.
This was due to imprecise speech {dropping of final plosives)
on the part of the speaker used to record the database. The
missing plosive triphones are therefore aligned to some other
piece of speech, which is then included in the pool used to
estimate the synthesis parameters. The Gaussians repre-
senting the states of these plosives are also poorly estimated,
which leads to poor model alignment, and so further degra-
dation of the synthesis parameters. Secondly, occurrences
of both the unreleased and released forms of a plosive were
found in the same phonetic context. The current system at-
tempts to model both with the same triphone, which is in-
appropriate. Using a more precise, more consistent speaker
could reduce the number of occurrences of both phenomena,
though the latter would still be likely to occur in triphones
present with differing wider contexts. However, one of the
chief merits of this system is that it can be retrained on
any voice, and so to restrict this capability in any way is
undesirable. Hence alternative solutions involving altering
the pronunciation dictionary and/or the individual model
structures will be sought instead.

Other factors may also contribute to the poor synthesis
of plosives. Examination of the database revealed that the
closure in a plosive lasts for 30-70ms. When present, the
following release takes the form of either a burst of turbu-
lent noise lasting 20-60ms, followed by a further 10-30ms
of /h/ like aspirated noise in the case of voiceless plosives,
(/t/, /k/ & /p/), or of a burst lasting 15-40ms followed
by formant transitions into the adjacent vowel in the case
of voiced plosives, (/b/, /d/ & /g/). Given these short
timescales, and the burst onset of the release, the treatment
of the speech signal as stationary 25ms frames undoubtably
has some effect on the quality of the synthesis parameters.
The framing effect on its own leads to only a small degrada-
tion in the quality of synthesised plosives, as can be seen by
.the MRT score for resynthesised natural speech. However
it is possible that interaction with the averaging that takes
place in constructing the Gaussians of the HMMs, leading
to poorly estimated Gaussians and hence poor model align-
ments, could be amplifying the effect. The possibility that
plosive structure is too complex to be properly modelled
by a three state model was addressed by the creation of
five state models. However, considering all the problems
discussed above, this was probably premature, and the re-
sulting system performed no better in the MRTs. Finally,
the use of single Gaussian distributions instead of Gaussian
mixture distributions may be over optimistic.
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The synthesised speech also suffers from the LP buzz
effect. This buzz is particularly pronounced in the P-
method because the LP coefficients tend to be blurred by
the pooling of dissimilar speech. The formant bandwidths
are therefore too wide, and hence the synthesised speech
overdamped. The I-method does not pool speech, and so
suffers less from the buzz effect. However it does suffer from
occasional artifacts in the synthesised speech caused by ei-
ther unrepresentative speech being used to estimate the LP
coefficients for a state, or by the speech synthesised from
a state sounding different to the database segment that it
was based upon.

6. CONCLUSION

A new technique which uses HMMs to automatically esti-
mate synthesis parameters from a speech database has been
introduced. The resulting synthesis system produces intel-
ligible speech which mimics the voice of the speaker used in
the database. .

Future work will be directed towards improving the seg-
mental intelligibility of the synthesised speech and incorpo-
rating the PSOLA synthesis technique into the system.
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