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ABSTRACT

This paper presents a study of different methods for
phoneme duration modeling in large vocabulary speech
recognition. We investigate the employment of phoneme
duration and the effect of context, speaking rate and lexi-
cal stress in the duration of phoneme segments in a large
vocabulary speech recognition system. The duration mod-
els are used in a postprocessing phase of BYBLOS, our
baseline HMM-based recognition system, to rescore the
N-Best hypotheses. We describe experiments with the SK
word ARPA Wall Street Journal (WSJ) corpus. The re-
sults show that integration of duration models that take
into account context and speaking rate can improve the
word accuracy of the baseline recognition system.

1. INTRODUCTION

Duration modeling has been used as a constraint in phoneme-
based continuous speech recognition and modest improve-
ments in recognition accuracy have been reported. In this
paper we present an application of duration modeling in
a large vocabulary continuous speech recognition system
based on hidden Markov models (HMMs), the predomi-
nant technique in speech recognition in the recent years.
HMMs basically model the speech signal at the level
of short time analysis frame. However, speech informa-
tion is conveyed also in long term features, such as the
duration of the phoneme segment. In the traditional HMM
algorithms, the probability of duration of a state decreases
exponentially with time. This behavior does not provide an
adequate representation of the temporal structure of speech,
rendering the modeling of phoneme duration weak. Con-
sequently we find that recognition errors, arising from in-
adequacies in acoustic modeling, often have implausible
phoneme durations. Due to this HMM inadequacy, there
have been attempts to refine or replace the intrinsic dura-
tion behavior of HMMs with an explicit model at the state
level, in order to penalize unlikely alignments. In this
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direction, hidden semi-Markov models (HSMM) allow ex-
plicit duration modeling and offer improved results [1, 2]
at the cost of increasing the computation load.

Instead of improving the durational behavior at the state
level, we propose to model the duration of the phonetic
segment explicitly, outside the framework of HMMs af-
ter the N-best algorithm has been used to provide a list
of likely hypotheses for the uttered sentence. The main
advantage of the N-Best formalism [3] is that it provides
the phoneme boundaries and information about the speak-
ing rate of the candidate hypotheses. Our duration system
uses this information to rescore the hypotheses and gen-
erate a score that combined with the HMM system score
gives a new ranking to the sentence hypotheses.

The basic unit in measuring duration is the phoneme.
The varying duration of phonemes is related to the phonetic
identity, the contexts of the phoneme, the lexical stress and
the speaking rate of the utterance. These features have
been known to be important cues for speech perception by
human listeners but not all of them have been integrated
in a continuous speech recognition system. In this work,
we attempt to incorporate our knowledge about the causes
of the variation within the phoneme duration model.

2. CONTEXT DEPENDENCE

A natural observation is that the phonetic segment duration
is affected by its neighboring phonemes. The use of differ-
ent models for different contexts of the same phoneme can
model the contextual effects in the durational behavior of
phoneme segments. For each phoneme segment, we exam-
ined its immediate left and right context (triphone models),
also taking into account the position of the word bound-
aries. We generated statistics for each triphone-context
word-boundary dependent model, counting the number of
occurences and the associated durations of each model. We
smoothed these counts using the Parzen-window method to
generate discrete probability density functions.



The use of such detailed models is tempered by the lim-
ited amount and the uneven spread of the training data. In
order to avoid poorly estimated density functions, we inter-
polated the triphone models with robust density functions,
such as left-context and right-context (biphone models),
and context independent models that are being estimated
using a much larger number of occurences [4]. Since we do
not want to interpolate detailed models that were estimated
from a large number of training samples, the combination
of the detailed and the robust model is based on the number
of training samples: ’
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where pg denotes the density function of the triphone word-
boundary dependent model and p, denotes the density func-
tion of the more robust model (biphone or context inde-
pendent models). The weight A is made proportional to
the logarithm of the number of training tokens Nt of the
triphone word-boundary dependent model:

A = min[1.00, 0.96 - log,, Nr] @)

3. SPEAKING RATE

One important source of variation of phoneme duration is
the change in speech rate. The speaking rate is a global
measure and can be defined as the average number of
phonemes per unit of time. In the ARPA WSJ database,
sentences are fairly long with an average of 120 phones,
so a speaking rate measured over the whole sentence may
ignore fluctuations within the utterance. Therefore we at-
tribute a speaking rate measurement for each phoneme
segment, which is computed based on the observed dura-
tion of a small number of phoneme segments around this
phoneme. We define the speaking rate measure as:

. zﬁ—M dt'+k

i = (3)
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where r; is the speaking rate of the #th phonetic segment,
di+x and m;.; are the observed duration and the expected
duration of the duration probability distribution, respec-
tively, of the (¢ + k) phonetic segment.

This definition gives us the flexibility to adjust the
speaking rate computation window to any length from one
phoneme segment to the whole sentence by appropriately
setting the variable M. In the experiments presented, we
chose to calculate the speaking rate for speech segments
of five phonemes (M = 2), based on some preliminary ex-
periments. Figure 1 shows the distribution of the phonetic
segments occurences as a function of the speaking rate.

Given a measure of speaking rate for each phonetic
segment, two different duration models were built to take
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Figure 1: Smoothed histogram of the distribution of the
training data with respect to the speaking rate measure r

advantage of the speaking rate information. The first ap-
proach is similar to [5] and uses the speaking rate informa-
tion to cluster the training data into different sets and com-
pute histograms and probability density functions for the
duration models in each set. The second approach assumes
that the duration of the phoneme segments is a function of
the speaking rate and uses this assumption to generate a
single normalized duration model. In both approaches, we
need to generate histograms for all the duration models
that occur in the training data without taking into account
any speaking rate information. These statistics are neces-
sary for the calculation of the mean duration values of the
models, which is used in equation 3 in order to compute
the phoneme segment.

3.1. Clustered duration models

The training phoneme segments are split into 3 groups
based on the speaking rate of each segment. The partition
is done so that each group contains approximately the same
number of phonetic segments. Then, for each group, all
duration phoneme models that occured in the group are
trained according to the methods in Section 2.

3.2. Normalized duration models

In the second approach, instead of conditioning the data on
speaking rate, we generated a normalized duration model.
We consider duration as a function of the speaking rate.
Then the normalized duration of each phonetic segment is
estimated by the following linear regression equation:

logd=a logr+f @



where d is the duration of the segment and r the cor-
responding speaking rate. The parameters a and 3 are
computed, so as to minimize the estimation error in the
least squares sense. We initially compute the parameters o
and @ from the training data and then, given the speaking
rate of each phonetic segment, we compute the normal-
ized duration d using equation 4. This way, we use all
the available training data in one group to estimate a nor-
malized duration probability density for each model. This
approach provides a solution to the problem of insufficient
training data that would arise, for the approach of clustered
duration models, if the number of different speaking rate
groups becomes large.

4. INCORPORATING LEXICAL STRESS
INFORMATION

The acoustic realization of a phoneme depends also on
the degree of stress, the speaker has put on it. Phonemes
that do not contribute to the overall understanding of the
complete utterance are likely to be poorly articulated [6].
By default the words of the lexicon that we used, are
unstressed and the HMM system is trained and provides
alignments using only unstressed phonemes. The sim-
plest way to investigate the potential of stress-dependent
phoneme duration modeling was to allow additional dura-
tion models for the stressed instance of a base phoneme.
In this work we consider only stressed vowels. We added
stress marks in the lexicon and we identified the phonetic
segmentents in the alignments, provided by the HMM sys-
tem, that correspond to stressed phonemes according to this
stressed lexicon. We accumulated separate statistics for
these instances and created separate probability densities
for stressed and unstressed instances of a model. Figure 2
shows the smoothed duration distributions of phoneme seg-
ments of phoneme /AE/ with two levels of stress (un-
stressed and stressed segments).

5. INTEGRATING DURATION IN AN
HMM-BASED SPEECH RECOGNITION SYSTEM -
EXPERIMENTS

We incorporated the duration models in a post-processing
phase of BYBLOS, the BBN Tied-Mixture HMM-based
recognizer. The recognizer automatically labels sentence
transcriptions giving the most likely word and phone align-
ment for each transcription. We used the labeled training
data to generate the duration statistics, as described in the
previous sections.

The N-Best algorithm generates, for every test utter-
ance, a list of the N most likely hypotheses which are
segmented with the HMM system. Each hypothesis is as-
sociated with the most likely word and phone alignment
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Figure 2: Smoothed duration distributions of unstressed
and stressed phoneme segments of phoneme /AE/

and a log-likelihood score. Based on the segmentation of
each hypothesis, the speaking rate and the duration of each
phonetic segment can be determined. Then the duration
likelihood of the segment can be derived using one of the
duration models described in the previous sections. In the
case of clustered speaking rate models, the speaking rate is
used to determine a group of distributions, from which the
likelihood of the duration segments is determined. In the
case of the normalized duration model, the speaking rate is
used to transform the observed duration to the normalized
one, and based on this normalized duration we compute the
duration likelihood of the phonetic segment. Alternatively
we can compute the duration likelihood of a segment using
a speaking rate independent duration model. Thus a dura-
tion log-likelihood score for each hypothesis is generated
by summing the duration log-likelihood scores of all pho-
netic segments of the given alignment. The duration score
can be combined with the HMM scores using appropriate
weights [3] to reorder the N-Best list.

6. EXPERIMENTS-RESULTS

Experiments were carried out using the ARPA WSJ cor-
pus [7]. This corpus consists of samples of read texts
drawn from the Wall Street Journal publications and pro-
vides training and testing material for speaker independent
(SI) continuous speech recognition in American English.
The WSJ database is in two distinct parts — WSJO and
WSJ1. We have built the duration system using training
material from SI-37 data formed by combining training
data from both WSJO and WSJ1 (about 36,000 utterances
or 62 hours of recorded speech) and used a test set of 513
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sentences having a vocabulary of 5,000 words.

The results of our experiments using duration model-
ing are shown in Table 1. The baseline performance of
the BYBLOS system on the test set was 7.7% word er-
ror rate (WE), using a standard trigram language model.
Initially the use of context independent phoneme based du-
ration models showed an insignificant decrease in the word
error rate. We achieved better results after incorporating
triphone-context word-boundary dependent information re-
ducing the error rate to 7.3%. The use of lexical stress did
not show any gain. We hypothesize that the addition of
lexical stress increases the number of free parameters with
a possible trade-off to their robust estimation. In subse-
quent experiments that incorporate speaking rate informa-
tion, we dismissed the lexical stress distinction of phonetic
segments. The speaking rate normalized duration models
did not offer any significant improvement over the speak-
ing rate independent duration models. However adjusting
the duration models to speaking rate using speaking rate
clustered models reduced the error rate to 7.0%, a 10% de-
crease in error rate over the baseline performance. This is a
significant factor considering that the ARPA WSJ database
contains read speech that is expected to have little variation
in speaking rate.

System WE (%)
Baseline system | 7.7%
System-A 7.6%
System-B 7.3%
System-C 7.3%
System-D 7.2%
System-E 7.0%

Table 1: Duration models used in scoring the N-Best hy-
potheses and percent word error (WE) performance

System-A: Context independent duration models.

System-B: Triphone context word-boundary dependent du-
raiton models

System-C: Triphone context word-boundary stress discrim-
inating duration models

System-D: System-B with speaking rate normalized dura-
tion models

System-E: System-B with speaking rate clustered duration
models

7. CONCLUSIONS

We modeled duration as a function of different sources
of variation, such as contextual effects, speaking rate and
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lexical stress. We employed the N-Best algorithm, in or-
der to add duration rescoring as a post-processing phase in
an HMM-based recognizer. This approach adds very lit-
tle overhead to the baseline system. We considered ways
of modeling durational variations due to context by using
triphone models, we proposed a local measure of speaking
rate and used two different ways for modeling durational
variation as a function of the speaking rate.

The results using a large vocabulary database of con-
trolled read speech show that integration of phonetic knowl-
edge about duration into the recognizer can improve the
recognition accuracy.
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