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ABSTRACT

In this paper, we study to what extent pitch movements
in utterances can be classified automatically by using
acoustical information and an intonation grammar. It
will be shown that pitch movements can be classified
into six categories with an agreement of about 80 percent
compared with human transcriptions, on the basis of the
pitch contour and the moments of vowel onsets. These
six categories cover about 90 percent of all pitch move-
ments used in the database (elicited speech). Results
involving an intonation grammar are also presented.

1. INTRODUCTION

The automatic classification of prosodic events and the
automatic transcription of pitch contours serves several
purposes. First of all, in the field of automatic speech
recognition (ASR), the automatic detection of accented
syllables may be useful for reducing the size of hypothet-
ical word lists during the generation of the acoustical
hypotheses (cf. Bagshaw, 1993; Hieronymus, 1989). A
more useful relation can be seen between the detection
of boundary tones and grammatical constraints. A third
application of prosodic information is the desambigua-
tion of ambiguous utterances, especially in a (human-
machine) dialogue setting.

In ten Bosch (1994), the relation has been studied be-
tween the statistical properties of acoustic realizations on
the one hand, and the corresponding intonation category
on the other. The intonation categories as used in this
study were defined by 't Hart, Collier & Cohen (1990)
(from here on referred to as HCC). In HCC, a general
framework is presented for the description of Dutch into-
nation, in which the pitch contour of a well-formed Dutch
utterance can be interpreted as a concatenation of dif-
ferent pitch movements. To this end, a collection of ‘ele-
mentary’ pitch movements is described, each of them as-
sociated with a different perceptual/phonetic ‘category’.
In essence, pitch movements are associated with (indi-
vidual) syllables. Secondly, an intonation grammar was
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defined which describes the admissible sequences of cat-
egories for well-formed Dutch utterances.

In this paper, we will focus on the question how the
pitch contour of an utterance can automatically be tran-
scribed to be as close as possible to a transcription by
intonation experts. This is done in two steps: (A) an
algorithm is trained to separate and classify the most
frequently occurring pitch movements occurring at indi-
vidual syllables; (B) the pitch contour of an entire ut-
terance is transcribed by applying a Viterbi algorithm
on a probability lattice spanned by the syllables and the
intonation categories. In the next sections, we first deal
with preliminaries. After that, a few results concerning
step (A) are briefly discussed; this material has been de-
scribed in ten Bosch (forthcoming). Next, step (B) is
focussed on in more detail.

2. PRELIMINARIES

Material, labelling

The material that was used in this paper is identical to
the material already described in ten Bosch (1994). It
consists of 191 Dutch, grammatically well-formed utter-
ances (Kraaijeveld, 1994). Of these utterances (elicited
speech), 104 were spoken by a male, and 87 by a female
speaker. In total, there were 15 female speakers and 18
male speakers.

In table 1, an overview is given of the intonation labels
transcribed by intonation experts. The categories ‘1’
‘2, ‘A’, ‘B’, and ‘P’ (‘pointed hat’) constitute over 90
percent of all labels (excluding the ‘nulls’ which refer to
non-labelled syllables).

Preprocessing

The pitch contour of the utterances has been pro-
cessed in a way described in ten Bosch (1994). Firstly,
the pitch contour was determined by a subharmonic
summation method (Hermes, 1988), followed by a
dynamic-programming routine to remove octave jumps.
The resulting pitch is transformed to an Equivalent-
Rectangular-Bandwidth (ERB) frequency scale since
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Table 1: Frequency count of all labels used in the
database. The symbol 'P’ refers to the rise-fall (‘pointed
hat’) pattern. The category ’other’ contains unclear
pitch realizations (8), additional labels referring to pitch
level (‘&’, ‘0’) (10), and additional labels denoting a
merged category 1&2 (12).

| label | count |

187
92
4

3

2
102
93
6
28
4
rise-fall 113
other pos. cat. 30
total pos. cat. 664

[ nulls { [ 968 |
[ all | total incl. nulls | 1632 ]

[ cat

rises

falls
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there are indications that pitch movements lend equal
prominence to syllables when expressed on this physi-
ological frequency scale (Hermes & van Gestel, 1991).
Finally, in order to allow a comparison across speakers
and utterances, the pitch contours have been normalized
for each utterance by subtracting the mean pitch, and
subsequently dividing the transformed pitch contour by
its variance.

3. CLASS SEPARABILITY (step A).

In ten Bosch (forthcoming), it has been shown that the
classification of the intonation category depends on four
choices in the classification model that are all of substan-
tial importance:

(1) the choice of the input representation, i.e. the step
from the actual pitch contour to a (vector) representa-
tion of that contour suitable as input for the classifier.
(2) The classification method itself is based on the Multi-
Layer Perceptron (MLP). For the sake of comparison, the
Bayes-Gauss-Luce (BGL) model (an extension of linear
discriminant analysis) is considered as well.

(3) The error criterion.

(4) The intonation grammar. The grammar specifies
which sequences of categories are feasible given an ut-
terance.

It appears that these four issues are important for the
classification results as well as for the underlying inter-
pretation of the classification. With respect to the input
representation, it has been found that a three-syllable
window performs adequately, all other methodological
choices being kept fixed. Vectorial representations in
which some of the components were based on pitch con-
tour information from the neighbouring syllables leads
to significantly better results than in the case of a two-
or one-syllable representation.

Comparing BGL to MLP, it has been shown that the
MLP with one hidden layer performs significantly bet-
ter than does BGL, as soon as the hidden layer consists
of sufficiently many hidden units (from 4 on). An MLP
with hidden layer performs significantly better than does
an MLP without a hidden layer.

The error criterion has been chosen in order to yield an
interpretation in line with the Viterbi backtracking algo-
rithm. The following similarity measure was chosen (to
be optimized) (cf. Fukunaga, 1972; ten Bosch & Smits,

forthcoming):
Z Z Yifji
X i

the first and second summation denoting a sum over
all stimuli and over all categories, respectively. Here,
Y = observed(CIX) and ¥ = Ppredictcd(clx) de-
note the observed and predicted categorical probabili-
ties given a certain stimulus (representation of a pitch
movement) X. The output of the MLP was normal-
ized in order to comply with the normalization constraint
SuUmMc Ppredictea(C|X) = 1 for all X.

The first three issues refer to step (A) of the algo-
rithm. In tabel 2, the classification results are shown for
the BGL-method as well as for the best MLP-topology.
The results are based on cross-validated models. The
topology of the MLP in this case was 4-10-6, referring to
a four-dimensional input representation, 10 hidden units,
and 6 output ‘response’ categories (i.e. the six categories
mentioned in the first column).

4. GRAMMAR (step B).

The intonation grammar as presented in HCC is put for-
ward as being generally suitable for the description the
intonation of well-formed Dutch utterances. In order to
render this grammar applicable to the present purpose,
it was pruned so as to contain only the categories ‘1’,
‘2, ‘A’, ‘B’, and ‘P’. Accordingly, the only allowed ex-
pansions in case of e.g. the ‘1A’ pattern for a sentence of
three syllables are ‘null-1-A’, ‘1-null-A’, and ‘1-A-null’.
Theoretically there are infinitely many of the ‘basic pat-
terns’ such as ‘1A’, which refer to the compact descrip-
tion of the intonation contour of an utterance without
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Table 2: Confusion matrices (presenting absolute occur-
rences) generated by the classification based on Bayes-
Gauss-Luce (upper panel), and on the 4-10-6-MLP
(lower panel). This MLP gave the best results on in-
dependent test sets. The stimuli are arranged along the
columns; responses are given along the rows. Each cat-
egory was represented by 67 different acoustic realiza-
tions.

stimulus S
resp. R || null | 1 | 22§ ‘A" | ‘B" | ‘P’
¢ 24 3 11 8 15 3
‘1 4 46 | 5 0 0| 14
2 11 71311 8 7
‘A’ 9 0 1 47 | 12 1
‘B’ 16 1 6 {11 | 29| 3
‘P’ 3 10| 8 0 3 |39
= 38 0] 5 1 4 1
‘1 2 59| 2 0 0 5
A 2 5 (55| 0 3 7
‘A’ 9 0| 0|62 8 0
‘B’ 14 | 0 | 2 4 | 50| 2
‘P 2 313 0 2 | 52

specification of the location of the pitch movements. In
practice, their number could be reduced to nine. These
basic patterns are listed in table 3. The third column
in this table refers to a ‘complexity’ measure, which is
in this case defined to be the number of terminal nodes
(‘labels’) in the grammatical pattern.

In table 4, the results of the entire algorithm are shown
ordered by the basic grammatical pattern (column 1).
The second and third columns contain the absolute and
relative number of occurrences of the patterns in the
database, respectively. The classification result is con-

Table 3: Number of terminal leaves as a measure of the
complexity of each grammatical pattern.

gram. pattern | complexity
(1A) 2
(1A)(14)
(1A)B(14)
P
P(1A)

PP
P2(1A)
P2(12)1A
P2(12)(12)1A

-
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sidered in two ways. The weak version (columns 4 and
5) refers to the weak error comparison, in which the hu-
man categorical pattern was considered to match per-
fectly with the best 10 predicted patterns as soon as the
patterns were partially correct. For example, the human
transcription was ‘PP1A’ and the best model prediction
was ‘1A1A’ and the second ‘PP’ with the P’s at the cor-
rect location. In that case, the weak match is perfect.
In the strong version (columns 6 and 7), the match is
perfect only if the best predicted pattern coincides with
the human transcription.

The data in table 4 are obtained for the most minimal
grammar out of these nine basic patterns fitting the ut-
terance transcription. As soon as the grammar is too
‘sloppy’, the error rate increases. This is not shown in
the table; in figure 1, however, relevant data are ad-
duced. In this figure, the classification results are shown
versus the complexity of the basic patterns as defined
in table 3. The circles refer to the weak match, the
‘+’-signs to the strong version of the match; both refer
to the minimal grammar. The cross signs refer to the
maximal grammar, i.e. the grammar that allows each of
the nine basic patterns, in the weak match mode. Es-
pecially for the weak match, there is a gradual trade-off
between the complexity of the grammar and the classi-
fication result, which can qualitatively be explained by
the fact that the search space size increases (worse than
polynomially) with the number of terminal leaves, and
the decrease of the probability of the correct match. The
results in case of the strong match are more difficult to
interpret, but some of the data points can be traced back
to the fact that the a priorsi biases for the basic patterns
are not equal.

So far we have not been able to detect a consistent
relation between (1) the complexity of the grammar, (2)
the ‘sloppiness’ of the grammar, and (3) the classification
result.

5. CONCLUSIONS

An algorithm aiming at the automatic transcription of
pitch contours has been discussed. It consisted of two
steps: (A) a syllable-based separation algorithm (a non-
linear classifier, modelled by a Multi-Layer Perceptron).
In this step, about 80 percent of realizations in the the
six categories ‘17, ‘2’, ‘A’, ‘B’, and ‘null’ can be correctly
classified. In step (B), a Viterbi backtracking algorithm
is used to extend the syllable-based separation results to
sentence-level. Depending on the type of grammar used
and especially on its ‘sloppiness’, the performance of the
algorithm varies between 50 and 94 percent in the ‘weak
comparison case’ with minimal grammar. In case of the
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results grammar

maximal grammar, results are generally worse, even in
the weak match mode.
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