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ABSTRACT

In this paper we present a novel, efficient search strategy for large
vocabulary continuous speech recognition (LVCSR). The search
algorithm, based on stack decoding, uses posterior phone probabil-
ity estimates to substantially increase its efficiency with minimal
effect on accuracy. In particular, the search space is dramatically
reduced by phone deactivation pruning where phones with a small
local posterior probability are deactivated. This approach is par-
ticularly well-suited to hybrid connectionisthidden Markov model
systems because posterior phone probabilities are directly com-
puted by the acoustic model. On large vocabulary tasks, using
a trigram language model, this increased the search speed by an
order of magnitude, with 2% or less relative search error. Results
from a hybrid system are presented using the Wall Street Journal
LVCSR database for a 20,000 word task using a backed-off trigram
language model. For this task, our single-pass decoder took around
15x realtime on an HP735 workstation. At the cost of 7% relative
search error, decoding time can be speeded up to approximately
realtime.

1. INTRODUCTION

The development of efficient search procedures is becoming an
increasingly important area of large vocabulary continuous speech
recognition (LVCSR). The search problem is to locate the most
probable string of words for a spoken utterance given the acoustic
signal and sentence models. Evaluation of the search space, which
is large due to the vocabulary size, is made more complex when
long-span language models (LMs) are used.

This paper describes an efficient search algorithm which has
been incorporated in ABBOT, a hybrid connectionist/hidden Markov
model (HMM) LVCSR system [1]. Hybrid connectionist HMM
systems, such as ABBOT, use connectionist networks to compute
direct local estimates of posterior phone probabilities 2, 3]. These
local posterior probabilities are converted to scaled likelihoods and
integrated into the HMM framework as (scaled) estimates of HMM
output likelihoods. Atrecognition time these scaled likelihoods are
used in the decoding, rather than directly using the posterior proba-
bility estimates. ABBOT uses a recurrent network [4] to estimate the
phone output probabilities of a context-independent HMM system.

This acoustic modelling approach is somewhat different to the
context-dependent mixture model approach used in most other sys-
tems and imposes different constraints on the search. In particular
the following differences have proved to be important in the design
of an efficient decoder:
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¢ Direct estimation of posterior probabilities, P(phone| data),
by the network, rather than likelihoods, p(data | phone);

» Context-independent acoustic modelling leads to a small
set of basic HMMs (typically 40-80), rather than several
thousand context-dependent models;

¢ Network probability estimation enables the computation of
all phone probability estimates at each frame without much
additional computational cost.

In this paper we describe a new search algorithm that we have
developed. This algorithm is based on the ideas of stack decod-
ing [5, 6]. It operates in a partially time-asynchronous single pass
and was designed for use with long-span language models. A
novel aspect of this algorithm is a new pruning strategy, phone
deactivation pruning. This approach makes direct use of the lo-
cal posterior probability estimates computed by a connectionist
network and may be used in conjunction with existing likelihood-
based approaches.

This search algorithm has been implemented in a decoder re-
ferred to as NOWAY. Results are presented for the ARPA North
American Business News (NAB) LVCSR database using a 20,000
word vocabulary and a backed-off trigram language model. The
performance of the search algorithm was evaluated in terms of
word error rate and computational resource requirement (CPU
time and memory usage). We have been particularly concemed
with the effect of varying the degree of posterior- and likelihood-
based pruning and the results of an extensive set of experiments
are reported.

2. SEARCH ALGORITHM

2.1. Basic Organization

The search algorithm described here is partially time-asynchronous
and is based on the ideas of stack decoding [7, 8,9, 5, 6]. The Viterbi
criterion is used—i.e., the full likelihood is not computed—so the
algorithm may be regarded as a reordered time-synchronous Viterbi
search. For simplicity of presentation, we consider decoding a
single utterance of length 7.

The basic data structure of the search algorithm is a priority
queue, or stack. A stack supports the usual operations of a priority
queue (e.g., pop and insert), along with operations needed for
the decoding task, such as merge and replace. The elements
of the stack are hypotheses; a hypothesis h contains a proposed
decoding Wy up to a given reference time f with a log likelihood
Ly. Wi is comprised of a word sequence {wx(0), wx(1), ...}.



The lexicon is a list of pronunciations for each word in the
vocabulary. For efficiency, it is stored as a tree; this reduces the
number of constituent phone models required by a factor of 3 or 4,
and allows computation to be shared shared between words with
a similar head. Multiple pronunciations are stored as individual
lexical items. A node in the tree corresponds to a phone in a
particular set of pronunciations. It contains the topology and prob-
abilities of the relevant phone HMM. The root node of the tree
corresponds to a pause model—a single state silence model which
may be skipped—to allow for optional inter-word pauses.

We assume a long-span language model. The basic opera-
tion of the LM is to provide the probability of an extension word
w to a hypothesis h, i.e., P(w | wy(0), wa(l), ...,wa(n)). If a tri-
gram language model is used, this probability is approximated by
pw|wp(n—1),ws(n)). Note that if a long-span LM is used, the most
probable hypothesis for a complete utterance is not necessarily the
most probable partial hypothesis ata time r < T.

2.2. Scoring Hypotheses

A fundamental decision that must be made in the stack decoding
algorithm, is which hypothesis in the stack should be popped and
extended. The criterion optimized in A* search [10] may be stated
as:

fu(tn) = Ly + b"(tn)

where f(¢) is an estimate of the log likelihood of an utterance with
hypothesis & (with reference time # and log likelihood L), and
b*(ts) is an estimate of the log likelihood of the best extension of
any hypothesis to the end of the utterance.

Direct computation of b°(#;) implies looking ahead to the end
of the data. This may be done using either a fast-match or multi-
pass decoding (e.g. {11]). However, lookahead may be avoided
if an approximation to the A* criterion is used [5, 6] in which the
difference between L and a least upper bound on the log likelihood
of any hypothesis at that time is computed, i.e.,

Fa(tn) = Ln — lubL(ts) ,

where lubL(1y) is the least upper bound on Ly at time ;. In practice
lubL(ts) is an estimate that may be updated as new hypotheses
are examined. Using this approximation, hypotheses need only
be compared with other hypotheses with the same reference time.
This implies using a set of stacks: one for each time frame of the
utterance to be decoded. This approach has been used successfully
by Bahl and Jelinek [5] and Paul [6].

In our work, an initial estimate of lubL() is generated from
the network outputs. The # most probable phone posteriors (not in-
cluding the most probable) are averaged and converted to a scaled
likelihood by dividing by a uniform prior. This is similar to a
garbage model technique used in wordspotting [12). This esti-
mate of lubL(#) is then updated whenever a particular hypothesis
extension has a higher likelihood at #.

2.3. Description of Algorithm
The basic algorithm is:

1. Sett=0;1lubL(t) = —, 0 < t < T; Initial null hypothesis:
ty = 0; Ly = 0 and W, = NULL.

2. Push initial hypothesis onto stack(0).
3. If (end-of-utterance) output top of stack() and exit.
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4. Else process stack(t):

» Pop all hypotheses into active hypothesis list, hlist.
o If hlist is not empty expand hypotheses in parallel:

Activate root node of lexical tree
Propagate hypotheses forward time-synchronously
and activate new nodes

Prune active nodes according to likelihood-based
and posterior-based pruning criteria

Update lubL(?) if required

At word-end nodes within envelope, extend hy-

potheses by one word, incorporate exact LM
score, push hypotheses onto relevant stack.

~ Continue if any nodes are active

5. tet+1;g0t03

The algorithm may be considered time-synchronous in that stacks
of hypotheses are processed in sequential order. It may be con-
sidered time-asynchronous because when a hypothesis is popped
from the stack and expanded, an arbitrary number of hypothesis
extensions may be generated for various times in the future. This
approach has also been termed “start-synchronous”.

The bulk of the work is done when propagating the active hy-
potheses forward in parallel. This processing takes advantage of
the tree-structured lexicon. The set of hypotheses may be propa-
gated through the same tree and share acoustic information with
their scores differing only in LM information and start scores. The
tree is searched in a time-synchronous, breadth-first manner, al-
though there is no a priori reason for preferring this to a depth-first
search.

3. PRUNING

The search space of an LVCSR system using a long span LM
is large and complex. If the search is to be manageable, then
approximations must be made to reduce the effective size of the
search space. The placing of such restrictions may be regarded
as pruning certain phones, words or hypotheses from the search
space without computing the complete probabilities for the relevant
hypotheses.

3.1. Likelihood-based Pruning

In the usual maximum likelihood HMM systems, the search space
is evaluated by computing likelihood estimates of the acoustic data
having been generated by a particular utterance model. Pruning
strategies are generally likelihood-based and involve the specifi-
cation of a likelihood envelope A around the likelihood L of the
most probable partial hypothesis at time ¢. Only hypotheses whose
likelihood falls within the envelope (i.e those hypotheses with a
likelihood L' 2 L — A) remain in consideration. The other hypothe-
ses are pruned. In the simplest form of likelihood-based pruning,
the envelope is defined statically at all times. An adaptive likeli-
hood envelope may also be defined by imposing a fixed upper limit
on the number of hypotheses to be extended and evaluated at any
given time. Efficient pruning can be enhanced by structuring the
lexicon as a tree, in which the nodes correspond to phone models,
and every path from the root to a leaf (or a node at a word end)
corresponds to a pronunciation of a word in the dictionary [13].



3.2. Posterior-based Pruning

The phone posterior probabilities estimated by the network may
be regarded as a local estimate of the presence of a phone at a
particular time frame. If the posterior probability estimate of a
phone given a frame of acoustic data is below a threshold, then all
words containing that phone at that time frame may be pruned. This
can be efficiently implemented within a tree structured lexicon. We
refer to this process as phone deactivation pruning. The posterior
probability threshold used to make the pruning decision may be
empirically determined using a development set and is constant for
all phones. The effect of varying the threshold on both recognition
accuracy and CPU time is reported in section 5.

Phone deactivation pruning takes advantage of the fact that
our basic acoustic component estimates posterior probabilities
rather than likelihoods. Posteriors may be regarded as discrim-
inative probabilities and do not give an estimate of P(data). Direct
estimation of posteriors saves summing over baseform HMMs,
which would be required to carry out an equivalent approach in
a likelihood-based system. The channel-bank-based approach of
Gopalakrishnan et al. [14] does attempt to use likelihoods to carry
out a similar operation to phone deactivation pruning. However,
this approach is somewhat more complex and requires phone-
dependent thresholds. When their approach was used in a fast
match, a factor of two speedup was achieved with a 5-10% in-
crease in search error.

A second form of posterior-based pruning was also employed
inNOWAY. This usedlocal phone posterior estimates to spotleading
and trailing silence. If the posterior estimate for silence in the
beginning frames of an utterance is always above a threshold (e.g.,
P(silence | data) > 0.97) then only the pause model (root node) is
activated (and similarly for trailing silence).

4. LANGUAGE MODEL

The use of a language model is essential to constrain the search
space in large vocabulary recognition. However there is a tradeoff
between accessing the required language model probabilities, and
the efficiency gain obtained in the search by their application.

The language models that we have used have been the standard
back-off bigrams and trigrams. Since memory is at a premium in
large-vocabulary search, the sparse arrays of trigrams and bigrams
are stored compactly in computer memory and retrieval requires
some computation. To aid efficient retrieval, we have used an
incremental caching scheme in which LM probabilities are cached
as they are used. g

In a tree-based lexicon, the correct way to take advantage of
the LM to reduce the search is by computing the maximum LM
probability for each node. This involves taking a maximum over
the LM probabilities of all words that use that node in their pronun-
ciation given the hypotheses that they are extending. This involves
a significant amount of computation, particularly in nodes close to
the root of the tree which are part of the pronunciations of many
words. In these cases we use an approximated upper bound, namely
the maximum bigram given a context, max P(k | j), where j and
k are the previous and current word labels respectively. This set
of default bigrams is computed in advance and stored in a table.
Experiments have indicated that using this approximation is more
efficient at all word-internal stages of the search and the exact LM
probabilities are used only at word ends. Incremental LM caching
is still used at word ends, giving a 50% speedup. In this case, all
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20K Trigram, Trained on SI-84
Pruning Parameters sidts5’ Nov '92
Envelope Stack Size | Time Error | Time Error
10 63 17.1 121} 216 125
10 31 161 121 | 157 126
10 15 119 1211 11.3 126
10 7 9.5 120 89 129
8 63 6.1 122 53 128
8 31 54 122 49 128
8 15 48 122 44 128
8 7 42 120 38 131

Table 1: Decoding performance on 20K ‘trigram task. si_dt.s5 is
closed vocabulary (actual size Sk) and Nov 92 is an open vocabu-
lary (actual size 64K), with 2% OOV. Both sets are non-verbalized
punctuation. The posterior probability threshold for phone deacti-
vation pruning was set to 0.000075. The envelope is log,, scale,
time is scaled in “realtime” units (on an HP735), error is the %
word error. The actual size of the search process on an HP735
ranged from 102—-129Mb.

hypotheses are propagated in parallel and only individually eval-
uated at word ends. Experiments in which individual hypotheses
may be separately pruned at each node have been carried out, but
do not show any efficiency improvements.

5. EXPERIMENTS

‘We have experimented with this search procedure, as implemented
in the NOWAY decoder, using the ARPA NAB CSR database. Our
experiments have used a 20,000 word vocabulary and the 1993 stan-
dard backed-off trigram language model provided by MIT Lincoln
Laboratories. The acoustic model used was a combination of re-
current networks using 78 phone classes plus silence trained on
the WSJO short term speaker data (SI-84) [15]'. We used the 20K
pronunciation dictionary developed by Dragon Systems.

The aim of these experiments was to evaluate the search al-
gorithm in terms of word error and computational requirement
(CPU time and memory usage). In particular, we investigated the
behaviour of the search algorithm relative to three pruning parame-
ters: envelope, maximum stack size and phone posterior threshold.

The experiments were carried out using two data sets. The
first, labelled si_dt_s5?, contained 216 utterances from 10 speakers.
This was a 5,000 word closed vocabulary set (the sentences being
filtered from a larger open vocabulary set). The second set, labelled
Nov '923, contained 333 utterances from 8 speakers. This used a
64,000 word vocabulary: about 1.9% of the words were out of
vocabulary with respect to the 20,000 word dictionary. In the
experiments here, the 20,000 word dictionary and standard trigram
language model were used for both sets.

Comparative results using the NOWAY decoder are presented
in tables 1 and 2. Table 1 shows how the performance varies
relative to the likelihood-based pruning parameters, envelope and

Note that most published results on this task have used the considerably
larger WSJ1 (SI-284) acoustic data training set.

2This was the ARPA 1993 spoke 5 development set, using a Sennheiser
microphone.

3This was the ARPA 1992 20K open NVP evaluation set.



20K Trigram, Trained on SI-84
Pruning Parameters sidt_sS Nov '92
Envelope Threshold | Time Ermor | Time Error
10 0.0 1653 122 [ 1751 124
10 0.000075 16.1 121 157 126
10 0.0005 43 122 39 129
10 0.003 14 143 13 149
8 0.0 468 125 504 126
8 0.000075 54 122 49 128
8 0.0005 1.7 126 15 136
8 0.003 0.6 150 06 1538

Table 2: Decoding performance with respect to varying phone
deactivation pruning threshold. The maximum stack size was set
to be 31. In cases when the posterior-based pruning threshold was
greater than 0.0, posterior-based pruning of leading silence was
also employed.

stack size. Table 2 illustrates the decoding performance relative to
the phone deactivation pruning threshold. We note that applying
posterior-based pruning with a threshold of 0.000075 gives around
an order of magnitude improvement in the decoding speed with an
increased relative search error of less than 2%.

The best parameter setting for realtime decoding is not shown
in the tables above. However using a posterior threshold of 0.0005,
an envelope of 8 and a stack size of 7 results in realtime performance
(on an HP735) with a relative search error of around 7%.

We have recently applied NOWAY to atask using a vocabulary of
65,000 words. When applied to the 1994 ARPA CSR evaluation set
(H1-P0) a decoding speed of 20 x realtime was obtained with 2%
relative search error (13.0% word error) using a posterior threshold
of 0.000075, an envelope of 9 and a stack size of 15 [1].

6. SUMMARY

We have described an approach to large vocabulary search for
a hybrid connectionistHMM system. Substantial improvements
in efficiency, with little or no search error, have been achieved
using features unique to the hybrid approach: local phone poste-
rior probability estimates and a small set of context-independent
HMMSs. When applied to a task using a 20,000 word vocabulary
and a trigram language model, the method of phone deactivation
pruning offered an order of magnitude speedup with minimal effect
on search accuracy and realtime decoding at a cost of 7% relative
search error.
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