A LOWER-COMPLEXITY VITERBI ALGORITHM

Sarvar Patel

Bellcore
445 South St.
Morristown NJ 07960
sarvar@bellcore.com

ABSTRACT

In continuous speech recognition, when using statistical
language models (e.g. bigrams) a significant amount of
time is used every frame to evaluate interword transi-
tions. In fact, if N is the size of vocabulary, O(N?)
operations are required per frame. Also, when evalu-
ating fully connected HMM with N states, the Viterbi
algorithm requires O(N?) operations per frame.

This paper presents the first algorithm to break
the O(N?) complexity requirement in the Viterbi al-
gorithm, whether evaluating interword transitions or
evaluating a fully connected HMM. The algorithm pre-
sented has an average complexity of O(NvN). Pre-
vious speed-ups of the evaluations of interword transi-
tions used heuristics, like pruning, or relied upon un-
availability of many of the bigram values. However, this
paper does not rely on any heuristics but fundamentally
improves the basic evaluation of the time synchronous
Viterbi algorithm.

Introduction

In continuous speech recognition, the Viterbi algorithm
is often used to find the most likely path given the
observation sequence derived from the speech signal.
When statistical language models (e.g. bigrams) are
used, a significant amount of computation is performed
every frame to evaluate the interword transitions. Since
every word could be preceded by every other word in
the vocabulary, there are O(N?) operations per frame
for interword transitions (where N is the size of the
vocabulary). Pruning [1] can be used to reduce com-
putation, but at the cost of sacrificing optimality. Also,
computation can be reduced if one has not ‘seen’ all of
the possible bigrams [2].

If, however, we have complete bigram values and
we are interested in the optimal answer, then we need
to perform O(N?) operations per frame using the stan-
dard algorithm. This paper reports the first improve-

0-7803-2431-5/95 $4.00 © 1995 |EEE

Figure 1: Standard bigram grammar, with N-squared
interword transitions to be evalnated each frame.

ment on that bound by introducing an algorithm with
average complexity of O(Nv/N) or O(N'%) operations
per frame. The evaluation of interword transitions is
similar to the evaluation of interstate transitions of an
HMM. While evaluating interword transitions we are
searching for the best preceding word using the prob-
ability scores at time ¢ — 1 and the bigram values (see
Figure 1). Similarly, in an HMM we are searching for
the best preceding state using the probability scores
at time ¢ — 1 and the interstate transition matrix. The
standard evaluation of the best state path of a fully con-
nected HMM with N states requires O(N?) operations
per frame [3]. Hence, the algorithm presented here also
lowers the bound to evaluate a fully-connected HMM.
The improved Viterbi algorithm requires on the aver-
age O(NVN) operations per frame. We are not using
better heuristics or exploiting incomplete information,
but fundamentally reducing the computations involved
in the Viterbi algorithm. The rest of the paper will
present the algorithm in terms of reducing the number
of operations for evaluating the interword transitions.

592

op(]

sbf]

k

~ MaxRan
| - |
r N-k |
mini ||||| Al

\ > 12 N
Phase1 Phgse
Figure 2: Two-phase algorithm for efficiently finding
max(sbf } * op[]).
Motivation far. In that case, there is no reason to evaluate re-

For each word w at time ¢ we have to find the best
preceding word at time ¢ — 1 (see Figure 1). That is:

for w=1,2,..N,
plw,t] = max(plpw,t — 1] * b[pw,w]) for pw=1,2,.N

w is the current word; pw is the previous word;

p{w,t] is the probability score of best path
ending at word w at time ¢,

b{pw,w] is the bigram weight of word w preceded
by word pw.

For each word w, N multiplications and N — 1
comparisons are needed to find the maximum value of
the products p[pw,t — 1] * bfpw,w]. Since there are
N words, O(N?) operations are required per frame.
The number of operations can be reduced if we can
find the best previous word in less than N operations;
specifically if we can calculate max (p[1,t — 1]*b[1,w],
p[2,t—1]*b[2,w], ..., p[N,t— 1]*b[N,w]) without having
to multiply all of the p[]*b[] products and comparing
them. This reduction will in fact result if, when eval-
uating the N p[]*b[] expressions, we find out, before
all expressions are evaluated, that the remaining p{ |’s
and b[}’s all have lower probabilities than the p[] and
b[] of one of the p[]*b[] expressions calculated thus

593

maining p[]*b[]’s, because they will only have lower
probabilities than the current maximum p{ J*b[].

This is the insight that we will exploit to answer
how exactly one knows that no more expressions need
to be evalnated, and how to determine the best order to
evaluate these expressions so that a minimum number
of them are evaluated. Furthermore, we will specify
the complexity of the resulting algorithm.

Algorithm

An array sb[pw,w] retrieves bigram probabilities from
b[pw,w] in sorted order. The array sb{] is created once
and remains static throughout the recognition phase,
since the bigram probabilities are fixed. For every
frame, the top k values of array p[] at time ¢ — 1 are
found and stored in an array op[] (for ordered pf]);
the value for k will be specified later. We see in Fig-
ure 2 [left side] that op[] has k values which are all
larger than the remaining N — k scores. There is no
sorting done among the top k values, however. The top
k values can be found for each frame using the selec-
tion algorithm for order statistics [4] which surprisingly
requires O(N) operations !

1Typically, in order to find the largest k values, we use sorting
which requires N log N operations, but this is not necessary for

After the selection algorithm for op[] is performed,
for each word w, at time t the best preceding word is
found in two phases. Figure 2 will be used to illustrate
this algorithm.

In phase 1, each of the k expressions, op[]*sb{], (see
footnote ?) is evaluated and, if necessary the maximum
value is updated, along with Mazrank, the index of
the highest sb[] value used in one of the k op[]*sb[]
expressions. It is clear from Figure 2 [right side] that
none of the remaining sb{ s to the left of Mazrank
can result in the maximum value of op[*sb[] because
none will have op[] larger than the op[] associated
with sb[Mazrank,w]. That is, the op[] will have to
come from the remaining N — k op[]’s which all have
lower values. The sb[]’s to the left by definition have
lower values than sb[Mazrank,w] because the array is
sorted. Therefore, the only possible way of getting a
larger maximum value is to evaluate the expressions
involving sb[|’s which are to the right of the Mazrank
in Figure 2.

This is done in phase 2, where the sb[]’s to the right
of Mazrank have the appropriate expression op{ |*sb|]
evaluated and the maximum value updated if necessary.
There are N-Mazrank expressions evaluated in phase
2. The algorithm will always terminate with the correct
maximum value, and k + (N - Mazrank) expressions
are evaluated in total. But what value should we use
for k and what is the resulting number of p[]*b[] ex-
pressions that are evaluated? If we knew the expected
value of M azrank, then we could discover the optimum
value for k and the average number of expressions eval-
uated.

Complexity Of The Algorithm

The average number, f(k), of expressions evaluated for
a specific k is: f(k) = k + (N — E[Mazrank]). The
expected value of Mazrank, E[Mazrank], is k(N +
1)/(k + 1) and is derived in Appendix A. Therefore
f(k) =k + (N — k(N +1)/(k + 1)). In order to find
the best value for discrete k, the 1st derivative of the
continuous function f(z) is taken with respect to the
continuous variable z and set equal to 0. The function
f(z) has exactly one minimum between 1 and N. The
z which solves the equation f/(z) = 0 will be the value

our task. What we need is the separation of the largest k values
from the lowest N — k& values, but we don’t need the the k values
sorted among themselves nor do we need the N — k values sorted
among themselves. The constant in the selection algorithm is
small enough to make the algorithm practical [4].

2The jth sb[;] associated with the ith op[i] is found by map-
ping arrays which would map opfi] as the value associated with
the word h, and then another mapping array would find the sb[j]
associated with word h.

594

which minimizes f(z), the number of operations. The
optimal value, zop;, is then VN + 1 —1, and the aver-
age number of expressions evaluated is 2(vN + 1 —1),
which is O(v/N) operations. The integer k is then cho-
sen as the ceiling or floor of, zop:, whichever has a lower
f() value. Since there are N words for which we have
to find out the best previous word to propagate the
recognized word sequence from, we require O(N V'N)
operations per frame. The selection done in phase 1 re-
quires only O(N) operations and does not change the
overall O(N+ N) nature of the algorithm. For N equal
to 1000, the standard Viterbi would require on the or-
der of N2 or 1,000,000 operations to be evaluated, while
our algorithm requires on average on the order of N!-°
or 32,000 operations to be evaluated. Since the con-
stants involved in the complexity of the algorithm are
small, this gives a reasonable view of the magnitude of
speed up possible.

Conclusion

We have presented a new algorithm which performs the
time-synchronous Viterbi evalnation. We also proved
that the new algorithm requires on average O(N+v/N)
number of operations per frame as oppose to the O(N?)
required by the standard Viterbi algorithm. The selec-
tion algorithm, requiring O(N') operations, is used to
find the top k values every frame. However, it should
be clear that it is not the fast nature of the selection
algorithm which gives us the overall O(N¥ v/N) number.
Even if we sorted the N numbers to find out the top
k values for every frame, O(N log N') operations would
be required. The overall number of operations will still
be dominated by O(Nv/N).

Heuristics, like pruning, have been successfully used
in the standard Viterbi algorithm because they increased
speed by sacrificing little in accuracy. Partly due to the
success of these heuristics, and the acceptance of the
O(N?) barrier, there has been little effort in improving
the speed of the time synchronous Viterbi. Although
this paper does not show how to break the O(N ?) bar-
rier in worst case, it does show how to break the barrier
in the average case with appropriate pre-processing.

This opens up a whole host of exciting theoretical
and practical questions. It is very likely that there
are algorithms faster than O(Nv/N) to be discovered.
What is a non-trivial lower bound for the average num-
ber of operations required for the time synchronous
Viterbi? Is an O(Nlog N) algorithm possible? Al-
though the worst case number of operations per frame
is O(N?), would an amortized worst case analysis of
the algorithm in this paper yield less than O(N 7
[An amortized analysis looks at number of operations

required over a sequence of frames as oppose to a single
frame]. And finally, perhaps ideas similar to those in
the paper can be mixed with pruning and other heuris-
tics to create novel algorithms.

Acknowledgement

I would like to thank David Pepper, Rashid Ansari,
Candace Kamm, Sharad Singhal, and Fure-ching Jeng
for comments on the paper.

Appendix A

Proof: E[Mazrank] = k(N + 1)/(k + 1).

P(Mazrank=i) probability that the maximum

value is ¢ when %k values from 1..N¥

are picked without repetition.

That is, one value is ¢ and the re-

maining k& — 1 values are less than i.

of sets of size k containing ¢ as
max /# of sets with k values.

(%)

since, the 7 element is fixed in the

P(Mazrank=i) =

numerator.
Thus,

E[Mazrank] =

See Reference [5] for summation identity.

References

[1] B. Lowerre, D. R. Reddy, “The HARPY speech un-
derstanding system”, in Trends in Speech Recognition
(Lea, W. ed.), pp 340-346. Prentice—Hall, Englewood
Cliffs NJ, 1980.

[2] Steve Austin, Pat Peterson, Paul Placeway, Richard
Schwartz, Jeff Vandergrift, “Toward a Real-Time Spo-
ken Language System Using Commercial Hardware”,
Proceedings DARPA Speech and Natural Language
Workshop, pp 72-77, June 1990,

[3] Lawrence R. Rabiner, “A Tutorial on HMMs and
Selected Applications in Speech Recognition,” Proceed-
ings of the IEEE, Vol 77, No 2, pp 257-286, Feb 1989.
[4] Robert W. Floyd, Ronald L. Rivest, “Expected Time
Bounds for Selection,” Communications of the ACM,
Vol 18, No 3, pp 165-173, March 1975.

(5] Ronald Graham, Donald Knuth, Oren Patashnik,
Concrete Mathematics, Addisson-Wesley, New York,
1994.

595

