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ABSTRACT

This paper proposes a time-synchronous continuous
speech recognizer driven by a context-free grammar
that integrates generalized LR parser based phoneme
context prediction and context-dependent HMMs. In
this method, a phoneme hypotheses trie is introduced
for the phoneme history representation of possible LR
states, and an LR state network is introduced for LR
path merging. Both techniques reduce the amount of
computation. The experimental results show that this
new method is more efficient than the conventional LR
parser driven phoneme-synchronous continuous speech
recognizer.

1. INTRODUCTION

A generalized LR (GLR) parsing algorithm[1] pro-
vides an effective framework for combining linguistic
information and phonological information. Phoneme-
synchronous search which uses GLR parsing and
HMM phoneme verifiers has been proposed as a
continuous speech recognizer for phrase-wise spoken
utterances(tHMM-LR{2], SSS-LR[3]). Figure 1 shows
the schematic diagram of the conventional phoneme-
synchronous HMM-LR (PS-HMM-LR) method. How-
ever, this method has the following two serious prob-
lems:

1. Redundant calculation of acoustic scores for

hypotheses with the same phoneme history
but a different syntactic parse
This problem is due to the use of a syntactic state
oriented hypothesis cell. As each cell contains the
information for one possible parse, many cells are
created for the same phoneme sequence.
(e.g. Two different cell hypotheses “hada(noun}”
and “ha(noun),da(copula)” are created for a sin-
gle phoneme sequence “hada”. In other words,
the acoustic matching is done twice for the same
phoneme history “hada”.)

. Decrease in acoustic accuracy caused by
the normalization of probabilities for beam
search
This problem is inherent in phoneme-synchronous
search because hypotheses have different time
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lengths. This requires the time normalization of
acoustic probabilities to compare the scores of dif-
ferent length.

In addition, the computational cost of the PS-SSS-
LR method increases exponentially as the input speech
becomes longer. On the other hand, the computational
cost for one-pass search is proportional only to the
number of hypotheses [4][5][6].

This paper proposes a time-synchronous continuous
speech recognizer driven by an LR parser. Three data
structures, i.e., (1) grid hypotheses independent of syn-
tactic parse, (2) a trie [7] structured phoneme history
(phoneme hypotheses trie), and (3) an LR state net-
work, are introduced to solve the first problem, while
time-synchronous search is introduced to solve the sec-
ond problem.

2. SYSTEM STRUCTURE

Figure 2 shows the schematic diagram of the time-
synchronous HMM-LR (TS-HMM-LR) method consist-
ing of one-pass Viterbi search and LR parser driven
phoneme context prediction.

The data structure “grid” is introduced as a hypoth-
esis representing the phoneme history and its acoustic
score. The grid hypotheses are defined by (3, 4, n, s),
where

2

J

input frames

HMM state
n predicted phoneme context (phoneme triplet)
s mode of phoneme hypotheses trie

The merit of a grid hypothesis is that it is indepen-
dent of syntactic parse and is time-synchronously up-
dated by one-pass Viterbi search.! In addition, acoustic
score normalization is not necessary for a grid hypoth-
esis because the time-lengths of all hypotheses are the
same. Accordingly, the second problem is solved.

To solve the first problem, an LR parser driven ar-
chitecture requires an efficient interface between the
grid hypotheses and the syntactic parse. In addition,
syntactically ambiguous parses for the same phoneme
history have to be merged. In the TS-HMM-LR

1By contrast, a cell hypothesis in the PS-HMM-LR method is
dependent on the syntactic parse and is phoneme-synchronously
updated.
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Figure 2. A proposed time-synchronous CSR driven by a
CFG ( TS-HMM-LR method )

method, this interface function is achieved by pre-
dicted phoneme context merging of the possible syn-
tactic parses with the same phoneme history.

The following section describes the predicted
phoneme context merging algorithm introduced in the
LR parser driven phoneme context prediction module.

PREDICTED PHONEME CONTEXT
MERGING OF POSSIBLE SYNTACTIC
PARSES

Two new data structures (i.e., a phoneme hypotheses
trie and an LR state network) are introduced to enable
the predicted phoneme context merging.

3.

Phoneme hypotheses trie
A trie-structured phoneme history representation.
A phoneme history H(s) and corresponding LR
state network nodes P(s) are identified by the trie

node s.
LR state network

A graph-structured LR stack representation. Each
node and arc of LR stack network express the LR
state and action, respectively. The LR path merg-
ing is realized as a transition to the same network
node.

A phoneme context prediction algorithm using a
phoneme hypotheses trie and an LR state network pro-
ceeds as follows:
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if there already exists phoneme trie node s’
then do nothing
else create phoneme trie node s’ using s and n
for each network node p € P(s)
for each action a on node p
if there already exists an arc to node ¢ for
action a from node p
then do nothing
else create new network node ¢
get predicted phoneme context Cy(g)
by looking up LR-table
endif
P(s") — P(s) g
Cils") — Ci(#"Y U Cyla)
end
end
endif
return C(s')

Phoneme

Hrygomeses LR State Network

H(S3) = "had"
P(s3)=1{3,11}

Figure 3. A simple example of the phoneme context merg-
ing using a phoneme hypotheses trie and an LR state net-
work

Figure 3 shows a simple example of the phoneme
context merging using an LR state network and a
phoneme hypotheses trie. When a phoneme /d/ is de-
tected in the search module, a new phoneme hypothe-
ses trie node S is created (H(S3) = “had” ) and cor-
responding LR state network nodes are also created
(P(S3) = {3,11}). The predicted phoneme context for
each LR state network node (C,4(3),C,4(11)) is calcu-
lated by looking up the LR table, and the union of
predicted phoneme contexts is stored in the phoneme
hypotheses trie node Ss (Cy(S3) — C,(3)J Cy(11))%.

Thus, all syntactic parses with the same phoneme
history are merged in the same phoneme hypotheses
trie node. As the search module only accesses the
phoneme hypotheses trie, syntactic ambiguity does not

2Both predicted phoneme context Cg(g) and C:(s’) are
phoneme triplets because a context-dependent HMM is used.



influence expansion of the grid hypotheses. Accord-
ingly, the first problem does not occur in the TS-HMM-
LR method.

4.

4.1.

Experiments evaluating phrase recognition and sen-
tence recognition were carried out using the dialogue
database on a conference registration task[8]. Context-
dependent HMMs (HMnet[9]) were used in these ex-
periments. For the speaker-independent experiment,
an HMnet was composed using a composition and clus-
tering method of speaker-dependent HMMs[10]. Other
experimental conditions are summarized in Table 1.

RECOGNITION EXPERIMENTS

Experimental conditions

Table 1. Experimental Conditions

Analysis conditions

Sampling rate | 12 kHz
Window Hamming window (20 ms)
Frame period | 5 ms
Analysis log power + 16-order LPC-Cep +
Alog power + 16-order ALPC-Cep
CFG
Rules - 978 (intra-phrase grammar)
1009 (sentential grammar)
Words 457
Phoneme 2.66 (phrase test data)
perplexity 2.79 (sentence test data)

HMnet(speaker-dependent)

State 600 states
Training 2620 Japanese words
HMnet(speaker-independent)
State 600 states (15 mixture)
Training 285 speakers (145 male, 140 female)
50 Japanese sentences
Test data
Phrase data | 1 male

701 Japanese phrases

2 male, 2 female
136 sentences

Sentence data

4.2. Speaker-dependent phrase recognition
test by using PS-HMM-LR method and

TS-HMM-LR method

Speaker-dependent phrase recognition tests were per-
formed to compare the efficiency of the TS-HMM-LR
and the conventional PS-HMM-LR methods. All of
the experiments were run on an HP9000/735 worksta-
tion. The beam-search technique was used in these
experiments. As the beam width of the TS-HMM-LR
method is not comparable with that of the PS-HMM-
LR method, the CPU time and recognition rate were
used to compare efficiency. Figure 4 shows the CPU
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time requirement of the TS-HMM-LR method for var-
ious beam widths normalized by that of the PS-HMM-
LR method for a fixed beam width. In this experiment,
the TS-SSS-LR method with a beam width of 235 was
expected to consume the same amount of CPU time
as the PS-SSS-LR method with a fixed beam width of
250.

Figure 5 shows phrase recognition error rates for
both methods. For the same CPU time requirement,
the error rates of the TS-HMM-LR method and PS-
HMM-LR method are 6.1% and 9.3%, respectively.
These results show that the TS-HMM-LR method
achieved a higher accuracy than the PS-HMM-LR
method by avoiding redundant acoustic calculations
and by using acoustic probabilities without normaliza-
tion.
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Figure 4. Ratio of CPU time requirement of the TS-
HMM-LR method for various beam widths (50-800) nor-
malized by that of the PS-HMM-LR method for a fixed
beam width (250)
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Figure 5. Phrase error rate reduction by using the TS-
HMM-LR method compared with the phrase error rate of
the PS-HMM-LR method for the same CPU-time require-
ment (speaker:malel)



4.3. Speaker-dependent sentence recognition
test by using TS-SSS-LR method

Sentence recognition tests were carried out using the
TS-HMM-LR method. The sentence error rates are
shown in Figure 6. In this experiment, the TS-HMM-
LR method achieved a sentence error rate of 29.4% for
the top candidate and 17.6% for the five best candi-
dates with a beam width of 3200.
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Figure 6. Sentence recognition error rate for the TS-
HMM-LR method with various beam widths (100-3200)
(speaker:malel)

4.4. Speaker-independent sentence recogni-
tion test by using TS-SSS-LR method

Table 2 shows the sentence error rates for the top can-
didates using speaker independent HMMs for various
speakers. The beam width was 3200. The error rate for
the same speaker (malel) increases 15.0 % compared
with that obtained using speaker-dependent HMMs.
The average sentence error rate of the top candidates
is 42.3 % for male and 49.1 % for female speakers.

Table 2. Sentence error rates using speaker-independent

HMMs (beam width 3200)

Speaker | sentence error rate (%)

topl | topd | topl0
malel 33.8 | 22.8 22.1
male2 | 50.9 | 44.7 40.2
femalel | 40.1 | 25.9 25.9
temale2 | 58.1 ] 37.5 37.5

5. CONCLUSION

This paper has proposed a new time-synchronous
continuous speech recognition method (TS-HMM-LR)
that integrates one-pass search and LR parser based
phoneme prediction and context-dependent HMMs. In
this method, a phoneme hypotheses trie was intro-
duced for the phoneme history representation of possi-
ble LR states and an LR state network was introduced

for LR path merging. The experimental results show
that this new method requires much less computation
than the phoneme-synchronous HMM-LR (PS-HMM-
LR) method. However, a considerably larger beam
width is still required for sentence recognition com-
pared to phrase recognition. Furthermore, sentence
error rates with speaker-independent HMMs are ap-
proximately 46 % larger than with speaker-dependent
HMMs. To cope with these problems, we plan to in-
corporate statistical language models, such as n-gram
and stochastic CFG.
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