LATTICE-BASED SEARCH STRATEGIES FOR LARGE VOCABULARY
SPEECH RECOGNITION

F. Richardson M. Ostendorf

Electrical, Computer and Systems Engineering

Boston University, Boston, MA 02215

ABSTRACT

The design of search algorithms is an important issue in
large vocabulary speech recognition, especially as more com-
plex models are developed for improving recognition accu-
racy. Recently, multi-pass search strategies have been used
as a means of applying simple models early on to prune the
search space for subsequent passes using more expensive
knowledge sources. The pruned search space is typically
represented by an N-best sentence list or a word lattice.
Here, we investigate three alternatives for lattice search:
N-best rescoring, a lattice dynamic programming search
algorithm and a lattice local search algorithm. Both the
lattice dynamic programming and lattice local search algo-
rithms are shown to achieve comparable performance to the
N-best search algorithm while running as much as 10 times
faster on a 20k word lexicon; the local search algorithm has
the additional advantage of accommodating sentence-level
knowledge sources.

1. INTRODUCTION

N-best rescoring has been used in many speech recognition
systems as a means of incorporating expensive or sentence-
level knowledge sources into the system (e.g. [1, 2, 3]). For
large vocabulary tasks, or tasks where the error rates are
high, it is desirable to use a large N for the N-best search
to insure that a good hypothesis is included in the list.
However, as N is increased, N-best rescoring becomes more
expensive.

A word lattice is an efficient representation of the in-
formation that is associated with an N-best list, reducing
both storage costs and redundant computations. Here we
use the term “lattice” to mean an acyclic, directed network
with explicit time and score information, as in [4]. This us-
age is somewhat different from the unannotated lattices, or
“word graphs”, used in some progressive search strategies
[1, 5]. In either case, lattices represent sentence hypotheses
that have been generated by a previous recognition stage,
and they have already proved to be an important structure
in multi-pass search algorithms.

In this work, three lattice-based search algorithms are
compared: N-best rescoring, dynamic programming (DP)
and a new local search algorithm. The lattice DP algo-
rithm is an efficient and optimal algorithm, but it only al-
lows for the incorporation of Markov knowledge sources into

This work was supported by ONR, grant number ONR-
N00014-92-J-1778

0-7803-2431-5/95 $4.00 © 1995 |EEE

J. R. Rohlicek

Bolt Beranek and Newman Inc.
Cambridge, MA 02138

the search. On the other hand, the lattice local search al-
gorithm is a sub-optimal algorithm, but both sentence-level
and Markov knowledge sources can be used. In general, the
efficiency and performance of the lattice local search algo-
rithm are dependent on the definition of the local neighboz-
hood used for the search and the size of the lattices.

The paper proceeds by introducing the general search
problem that the three different algorithms must solve, and
then describes each algorithm. Next, we give experimen-
tal results on different tasks and with different knowledge
sources, comparing the three algorithms in terms of speed
and recognition error rate. We conclude by summarizing
the results and describing conditions under which one would
use each approach.

2. PARADIGM

The lattices used in this work were obtained from the BBN
Byblos 5-pass lattice decoder [1], where each pass succes-
sively reduces the search space. The fourth pass of the
decoder is a backward beam search using a trigram lan-
guage model and cross-word triphone acoustic models. In
other BU/BBN work [6, 7], the results of the fourth pass
are used to generate N-best lists, which are subsequently
rescored and resegmented in a fifth pass by a more de-
tailed HMM acoustic model, providing phonetic segmen-
tations and HMM score information as well as trigram lan-
guage model scores for use in rescoring by segmental mod-
els. For the lattice rescoring work, the decoder was modi-
fied so that a lattice was produced after the fourth pass of
the BBN decoder. The lattices are annotated with segmen-
tation times and HMM word scores corresponding to the
fourth-pass model.

The topology of the lattices is the same as the topology
of the the trigram expanded grammar constructed by the
BBN decoder. That is, the lattices are backwards and each
word node in a lattice has a unique right context. Each arc
therefore corresponds to a specific trigram transition. Using
the notation a]b to indicate word a in the right context
of b. Each arc therefore corresponds to a specific trigram
transition. For example, the arc a}b — b]c is associated with
the trigram probability p(w; = ajwi41 = b, wiy2 =¢).

For all of the rescoring algorithms investigated in this
work the following knowledge sources are used: the BU
Stochastic Segment Model (SSM) [6], a relative frequency

duration model, either a trigram language model or a sentence-

level mixture language model, and the number of words,

576

phones and inter-word silences. In all cases, the SSM seg-
ment and frame scores are cached in order to reduce re-
dundant computation and the phonetic segmentations on
the lattices are used to constrain the search with the SSM.
The scores from the different knowledge sources are linearly
combined with weights estimated from the N-best hypothe-
ses of a development test set, using a grid-based optimizer
[8]. Therefore, N-best rescoring must be performed in order
to estimate weights for all algorithms.

3. LATTICE-BASED SEARCH ALGORITHMS

For all of the lattice-based search algorithms, the first step
in decoding requires expanding the annotated word lat-
tice to include multiple word pronunciations and triphone
contexts with optional inter-word silences. The process of
adding multiple pronunciations introduces triphone nodes
without time information, so segmentation times for these
nodes are estimated using right-context mean phone du-
rations. The times are used to constrain the search and
reduce the cost of the segmental acoustic model. Given
the expanded lattice, three different search algorithms are
investigated here: the lattice DP, N-best and local search
algorithms, as described below.

3.1. Lattice DP Search

The lattice DP algorithm is an optimal algorithm which
guarantees that the highest scoring hypothesis will be found.
The algorithm is also efficient in that each word node in
the lattice is only evaluated once, although different word
nodes may contain the same word (associated with a differ-
ent trigram context) and thus there is still some redundant
computation.

To specify the DP search, let {n,,n:, N, A} define a
lattice, where n, and n; are the first and last nodes of the
lattice, A/ is the set of all nodes, and A is the set of all
triphone arcs {y(n:,n;) : ni,n; € N}. R(ni) is the set
of constrained times for node n;, and CS(y(ni, n;),t,7) is
the combined score for the arc vy(ni,n;) and the triphone
segment times t and 7, which includes a weighted combina-
tion of: the log likelihoods of the segment acoustic model,
the duration model, and the language model (if the arc is
at a word boundary), and phone, word and silence inser-
tion penalties depending on arc location. AN is topologi-
cally sorted so that all of the scores reaching a node at a
given time have been evaluated before its successor nodes
are reached. The lattice DP algorithm is then

1. Initialize: J*(0,n,) =0
2. For each n; € {N — n,} calculate:
For each t € R(n:), sequentially

J*'(t,ni) = max
¥(ni,n;)EA,TER(n;)

{J.(Ta ni) +Cs(7(ni)n1)’t: T)} (1)

The argument that maximizes the score for each (¢, n;) pair
is stored in a traceback structure which contains the highest
scoring path at the end. For an utterance of length T,
J*(T,n:) gives the starting point of the traceback. As in
other recognition work, a beam search could be used to

reduce the cost of the lattice DP, but it was not explored
in the experiments reported here.

3.2. Lattice N-Best Rescoring

N-best rescoring is performed on the lattices using the lat-
tice DP algorithm and constraining the path through the
lattice to correspond to one N-best hypothesis at a time.
The modification to Equation 1 is trivial: triphone arcs cor-
responding to words that are not in the N-best hypothesis
are not scored.

Lattice N-best rescoring differs from rescoring an N-
best list in that the fifth segmentation pass of the decoder
is not needed and the data structures for representing the
search space are more efficient. In addition to providing a
performance baseline, the lattice N-best algorithm is useful
for providing the N-best hypothesis scores that we use in
weight estimation for all of the algorithms.

3.3. Lattice Local Search

The lattice local search algorithm is an iterative strategy
that successively evaluates small changes from the current
top hypothesis. The algorithm was motivated by the split-
and-merge phone recognition search algorithm proposed in
[9] and consists of the following steps:
1. Initialize: -

CurrHyp is set to the 1-best hypothesis from the

BBN decoder. Find the best new segmentation and

associated score of this hypothesis.

2. Iterate:
Evaluate all hypotheses in the local neighborhood of
CurrHyp. NewHyp is set to the hypothesis that
has the largest increase in score for the sentence hy-
pothesis.

3. If NewHyp is the same as CurrHyp then Stop,
otherwise go to 2.

The local neighborhood of a current path CurHyp in
the lattice consists of all paths that form simple loops with
CurHyp, as illustrated in Figure 1. We refer to such a
deviation from the current path as a “local path”. These
“local paths” are sequences of words in the lattice that are
not part of CurHyp, but are connected to it. For this
work, six types of local paths, depicted in Figure 1, were
used for the local neighborhood: “insertions,” “deletions,”
“substitutions,” “splits,” “merges,” and “double substitu-
tions.” The neighborhood was motivated by the fact that
the vast majority of errors in the WSJ task are simple one
or two-word sequences. We also investigated smaller neigh-
borhoods, but the recognition accuracy degraded.

During the lattice local search, the acoustic model rescor-
ing involves resegmentation of the region of the utterance
corresponding to the local path. The language model score
change (a log likelihood ratio) may be computed at the
sentence level or only over the local path, depending on
the model. In the current implementation, which reseg-
ments only the local path, a second resegmentation step
is included after choosing the new path since changes in
word labels can affect the segmentations of words beyond
the local neighborhood. The local path scores are cached
to reduce redundant calculation.

577

AlX X]B

,.4.. -- ‘ -— Insertion
#]2' AJB '8B]C CI]D DIE EIF

’A.]‘X_ _— X.]: -— Substitution

#]ai/ Al BJc ~CID DIE EJF

f’l
v ~~. AlC.-"
. ~ ‘7\Deletion
WAJX X1Y Y C
o -0+ - @ solic

AlX X]D

L0 --0Oy /Merge
#]é,*"A]B BiC C\]\D‘N\D]E EJF
~ ,’
SsAlXx X}y YIpe”
o --0e--0F X

Double
Substitution

Figure 1: Six local paths that comprise the local neighbor-
hood for the lattice local search.

4. EXPERIMENTS

The lattice-based algorithms were evaluated on the ARPA
1993 Wall Street Journal (WSJ) corpus [10], which consists
of read WSJ articles collected with a clean microphone.
Two separate tests were performed: the 1993 Hub 1 (20,000
words) and Hub 2 (5,000 words) tests. In both cases, the
same acoustic model is used which is trained on all of the
acoustic training data (WSJO and WSJ1). Experiments
were also performed on the Switchboard corpus [11], but
the error rates were too high (>50%) to draw meaning-
ful conclusions about performance trade-offs (although the
conclusions about speed trade-offs scaled for this Switch-
board task).

4.1, Lattice Statistics

To illustrate the importance of lattice (vs. N-best) repre-
sentations and the effect of task difficulty, Table 1 gives
lattice statistics for three tasks: the 5k vocabulary WSJ-
H2 and open vocabulary WSJ-H1 tasks (both high quality
read speech) and the roughly 5k vocabulary Switchboard
task (spontaneous, conversational speech). The statistics
include the N (from N-best) that was used to generate the
lattice, the sentence inclusion rate (percentage of time the
correct hypothesis can be parsed by the lattice), the word
coverage (average word accuracy, obtained by finding the
lowest error parse of the correct sentence in the lattice),
and the accuracy of the 1-best HMM hypothesis. As the
tasks get more difficult, indicated by a decrease in 1-best
accuracy, the sentence inclusion and word coverage rates
fall off dramatically despite the increase in N.

Table 1: Lattice statistics for the development test sets of
different tasks.

Task WSJ-H2 | WSJ-H1 | SWBD
N 100 500 2000
Sentence inclusion 79% 53% 10%
Word coverage 98% 93% 64%
1-best accuracy 91% 81% 43%

4.2. Search Trade-Offs

In the experiments below, we present speed and accuracy
figures for the different search algorithms. The accuracy
figures are standard word error rates, including substitu-
tion, insertion and deletion errors. The speed figures are
the number of times real time required for recognizing an
utterance on a Sparc 20/50.

In initial experiments, we verified that the lattice N-
best rescoring algorithm had the same speed and accuracy
costs as the original N-best rescoring algorithm. In fact
the performance was slightly better, probably because the
time windows used to constrain the possible segmentations
with the acoustic model could potentially be wider when
taken from the lattice rather than an HMM resegmentation.
Interestingly, the speed of N-best rescoring for the H1 task
(using a 20k dictionary) is almost twice that of the 5k H2
task when using the same size N to generate lattices. We
hypothesize that the larger vocabulary task generates more
active triphones for the N-best hypotheses which results in
a decrease in the amount of computation that is saved by
score caching,.

The next series of experiments compared the perfor-
mance of the different algorithms for Markov knowledge
sources, for the H2 (N=100) and H1 (N=500) WSJ tasks.
On both tasks, we see a slight improvement in performance
for the DP algorithm and a slight degradation in perfor-
mance for the sub-optimal local search algorithm relative to
N-best rescoring. However, both the DP and local search al-
gorithms are significantly faster than N-best rescoring, with
the speed difference increasing as a function of the size of
the lattices. This gain is despite the use of score caching
across hypotheses in the N-best rescoring search. The local
search algorithm, for these lattices, is not much different in
speed than the DP search, despite the fact that it converges
in only a few steps (roughly 2 iterations for H2 and 2.5 it-
erations for H1). The local search would be faster if not
for redundant computation, some of which can be reduced
by word caching, increasing the resegmentation region as-
sociated with the local neighborhood (to avoid subsequent
resegmentation), and using a bigram rather than a trigram
expanded lattice.

For Markov knowledge sources, there appears to be no
advantage to using the local search algorithm. However,
there are many interesting knowledge sources that are not
Markov, particularly in language modeling where one might
want to capture long-distance dependence. The speed and
performance of the lattice local search algorithm with a
sentence-level mixture language model [12] are presented in

578

Table 2: WSJ H2 and H1 speed and error rates for both
development and evaluation test sets comparing the lattice
N-best, DP and local search algorithms when only Markov
knowledge sources are used.

Test N-Best DP Local Search
H2:dev 13.5 7.4% 4.6 7.3% 4.6 7.5%
H2eval | 139 | 6.2% [41| 6.2% | 3.7 | 6.5%
Hi:dev | 102.6 | 15.6% | 8.0 | 15.4% | 8.6 15.9%
H1l:eval 94.6 14.3% | 9.1 | 13.9% | 9.8 14.5%

Table 3: WSJ H1 development and evaluation test results
for lattice local search algorithm with the sentence-level
mixture language model.

Lattice N-best Local Search
Test Speed | Error Rate | Speed | Error Rate
Hidev | 103 15.4% 9.0 15.7%
Hi:eval 95 13.7% 9.6 13.5%

Table 3. Note that the local search algorithm is still much
more efficient than N-best rescoring and achieves slightly
better error rates on the WSJ H1 evaluation test than DP
with only Markov knowledge sources. Further gain could
probably be attained at a small additional cost by using
additional or more complex sentence-level models.

5. CONCLUSIONS

Presented here are two algorithms which have been shown
to be more efficient than N-best rescoring while attaining
similar or even better results. The lattice DP algorithm
has been shown, in general, to perform better than N-best
rescoring but has the drawback of only allowing Markov
knowledge sources to be incorporated in the search. The
lattice local search is as efficient as the lattice DP algo-
rithm while achieving slightly lower error rates, and could
potentially be more efficient on a larger lattice as prelim-
inary experiments on the Switchboard task indicated. In
addition, the local search has the advantage of allowing
sentence-level knowledge sources such as a sentence-level
mixture language model into the search. Therefore, with
sentence-level knowledge sources, the lattice local search
would generally be the best choice, unless the initial start-
ing point is very bad, in which case one might want to do
a preliminary DP rescoring or use N-best rescoring. In all
cases, we still use the lattice N-best search to score hypothe-
ses for use in score combination weight estimation.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of researchers
at BBN, particularly Rich Schwartz, for providing access to
the BBN decoder and for help with our code modifications.

579

7. REFERENCES

{1] L. Nguyen, R. Schwartz, Y. Zhao and G. Zavaliagkos,
“Is N-Best Dead?,” Proc. of the ARPA Human Lan-
guage Technology Workshop, March 1994.

M. Rayner, D. Carter, V. Digalakis, P. Price, “Com-
bining Knowledge Sources to Reorder N-Best Speech
Hypothesis Lists,” Proc. of the ARPA Human Lan-
guage Technology Workshop, March 1994,

M. Ostendorf, A. Kannan, S. Austin, O. Kimball, R.
Schwartz and J. R. Rohlicek, “Integration of Diverse
Recognition Methodologies Through Reevaluation of
N-Best Sentence Hypotheses,” Proc. of the DARPA
Workshop on Speech and Natural Language, Feb. 1991,
pp. 83-8T.

F. Alleva, X. Huang and M. Hwang, “An Improved
Search Algorithm Using Incremental Knowledge for
Continuous Speech Recognition,” IEEE Int. Conf.
Acoust., Speech, Signal Processing, Apr. 1993, pp. 307-
310.

H. Murveit, J. Butzberger, V. Digalakis and M.
Weintraub, “Large-Vocabulary Dictation Using SRI’s
DECIPHERTM Speech Recognition System: Progres-
sive Search Technique,” [EEE Int. Conf. Acoust.,
Speech, Signal Processing, Apr. 1993, pp. 319-322.

M. Ostendorf, F. Richardson, S. Tibrewal, R. Iyer, O.
Kimball, J. R. Rohlicek, “Stochastic Segment Mod-
eling for CSR: The BU WSJ Benchmark System”,
ARPA Spoken Language Systems Technology Work-
shop, March 1994.

G. Zavaliagkos, Y. Zhao, R. Schwartz and J. Makhoul,
“A Hybrid Segmental Neural Net/Hidden Markov
Model System for Continuous Speech Recognition”,
IEEE Trans. on Speech and Audio Processing, Vol. 2,
No. 1, Part 2, pp. 151-160, Jan 1994.

A. Kannan, M. Ostendorf and J. Rohlicek, “Weight Es-
timation for N-Best Rescoring,” Proc. of the DARPA
Workshop on Speech and Natural Language, Feb. 1992,
pp. 455-456.

V. Digalakis, M. Ostendorf and J. R. Rohlicek, “Fast
Search Algorithms for Phone Classification and Recog-
nition Using Segment-Based Models,” IEEE Transac-
tions on Signal Processing, December 1992, pp. 2885-
2896.

F. Kubala, et al., “The Hub and Spoke Paradigm
for CSR Evaluation,” Proc. of the ARPA Human Lan-
guage Technology Workshop, March 1994.

J. Godfrey, E. Holliman, J. McDaniel, “Switchboard:
Telephone Speech Corpus for Research and Develop-
ment”, IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, March 1992, pp. 517-520.

R. Iyer, M. Ostendorf and J. R. Rohlicek, “Language
Modeling with Sentence-Level Mixtures,” Proceedings
of the ARPA Workshop on Human Language Technol-
ogy, March 1994.

(2]

(3]

(4]

(8]

(6]

(8]

(10]

[11]

(12]

