A TREE SEARCH STRATEGY FOR LARGE-VOCABULARY
CONTINUOUS SPEECH RECOGNITION

P. S. Gopalakrishnan, L. R. Bahl and R. L. Mercer*
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

ABSTRACT

In this paper we describe a tree search strategy, called
the Envelope Search, which is a time-asynchronous search
scheme that combines aspects of the A* heuristic search al-
gorithm with those of the time-synchronous Viterbi search
algorithm. This search technique is used in the large-
vocabulary continuous speech recognition system devel-
oped at the IBM Research Center.

1 INTRODUCTION

The large-vocabulary continuous speech recogni-
tion system developed at the IBM Research Center
uses a tree search algorithm called the Envelope Search
for determining the recognized word sequence in re-
sponse to a spoken utterance. This is an asynchro-
nous search scheme that combines aspects of heuristic
search used in the A* algorithm [1] with techniques
used in the Viterbi search algorithm [2]. A* type
search algorithms for speech recognition have been
used at IBM [3, 4] and MIT Lincoln Labs [5]. Most of
the other large vocabulary continuous speech recog-
nition systems currently under development, e.g. at
CMU [6], BBN [7], and SRI [8], use search strategies
based primarily on the Viterbi synchronous search al-
gorithm. The introduction of some ideas from heuris-
tic search leads to a reduction of computational and
storage needs without sacrificing accuracy.

The goal of the recognizer is to find the word se-
quence that has the maximum a posieriori probability
given an observed acoustic input, i.e., given a sequence
of acoustic observations Y = y;y2...yr the decoder
chooses a sequence of words W = wyws,...wy such
that

~

w argmazy Prob(W|Y)

argmazy, Prob(Y|W)Prob(W)

(1)

*Currently at Renaissance Technologies, Stony Brook, NY

0-7803-2431-5/95 $4.00 © 1995 IEEE

572

The acoustic match probability Prob(Y|W) is ob-
tained from acoustic models, which are generally hid-
den Markov models. The language model probability
Prob(W) is obtained from a model of the language,
most commonly word n-gram models.

In order to find the most likely word sequence, we
conduct a word level tree search. Conceptually, we can
organize the set of all possible word sequences into a
word-level tree. The root node corresponds to the null
word sequence. Each branch in the tree corresponds to
a word, thus each path starting at the root node corre-
sponds to a sequence of words. Paths ending at termi-
nal nodes of the tree correspond to complete sentences.
Paths ending at non-terminal nodes correspond to par-
tial sentences. Given a sequence of acoustic observa-
tions, the search algorithm explores the tree and at-
tempts to find the complete path having the highest
score. The decoder keeps a dynamically changing list
of partial paths that have been explored so far. This
list is initialized to contain the null path corresponding
to the root node of the search tree. During the search
process the decoder also keeps track of the best com-
plete path found so far. Of course, during the early
stages of the search, there will not be any such path.
Complete sentences are compared on the basis of the
cost function

A(W) = log Prob(Y |W)Prob(W). (2)
For partial paths we use a heuristic evaluation func-
tion which is described in detail below. Based on this
heuristic evaluation function the decoder designates
each partial path as alive or dead. In each iteration
of the search, one of the alive partial paths is chosen
for extension. Extension of this path results in new
paths that are each one word longer. Newly created
partial paths are added to the list of partial paths.
Each newly created complete path is compared to the
best complete path and replaces it if it is better. The
search terminates when there are no partial paths that

are alive. The best complete path is then output as
the recognized sentence.

2 SOME TERMINOLOGY

In order to explain the search in greater detail it
is useful to establish some terminology. Each path
corresponds to a word sequence WI" = wiwsy...w.
Let tmd(Wl") denote the most likely end time for W1’°
in the acoustic sequence Y. Given a word sequence
Wk and the acoustic sequence Y, the most likely end
times t.,q(W}),7 = 1,2,...k can be obtained from
the acoustic match calculation. Details of a method
for calculating the most likely end times can be found
in Bahl et al [9]. Thus, given the word sequence Wf
and the output sequence Y, we assume that:
word w; accounts for frames 1,2, .. .tmd(Wll),
word w; accounts for frames t.na(Wi)+1, .. . tena(W3),
etc. In general,

word w; accounts for frames tona(Wi ~1)+1,...tena(W]).

For each word sequence W{ and time frame index
t = 1,2,...tena(W{) we can define a log likelihood
value

L(WE,t) = log Prob(Wi)Prob(Y{|W})

for _ .
tend(Wi™1) < t < tena(W7).

For t > tena(W}), the log likelihood values are unde-
fined. Thus each path W has an array of log likeli-
hood values L(WY) associated with it, where

L(W}) = [L(WE, 1), ... L(WE, tena(WH)].

The size of this array is tmd(WI"). We refer to this
array of values as the profile of the path. We will
denote the last value in the array as L.nq(WY), i.e.

Lena(WE) = L(WE , tena(WT))

Figure 1 shows a graphical representation of a path
profile.

During the search process, the decoder keeps a dy-
namically changing list of partial paths that have been
explored so far. We will refer to this list as PAR-
TIAL. This list is initialized to contain the null path
corresponding to the root node of the search tree. In
PARTIAL, the paths are ordered in longesi-best order.
They are sorted with the primary sort index being the
length of the path i.e. t.,a(W¥), and the secondary
index being the log likelihood at the most likely end
time of the path i.e. Lmd(Wl"). This means that the
paths in PARTIAL are ordered in descending order
of their most likely end times; and paths having the

573

L O

|

tana(W1D

|
»

LW ;. D

Figure 1. Profile of a path.

Wy

W,

) w,

t

Y

LWty y

Figure 2. Envelope constructed from three profiles.

Y

i,

LW\ y

e
e,

o @NVIIOP

Figure 3. Examples of alive and dead paths.

same most likely end times are ordered in descending
order of their log likelihood values at the most likely
end times. During the envelope construction process
(explained later), paths in PARTIAL will be examined
in longest-best order.

During the search process the decoder also keeps
track of the best complete path found so far. We re-
fer to this path as BEST-COMPLETE. During the
early stages of the search, there will not be any path
correponding to BEST-COMPLETE. Complete sen-
tences are compared on the basis of the cost function
of equation (2).

Given a set of path profiles we can construct an
envelope of log likelihood values which at each time
frame index is the maximum value among the individ-
ual path profiles, i.e., the envelope is the lowest upper
bound (lub) of the individual path profiles. Figure 2
shows a simple example of an envelope constructed
from three path profiles. The three profiles are repre-
sented by dashed, dotted and solid lines respectively.
The envelope which is the lub of the three profiles is
the wider gray line.

Let e(t) denote the envelope value at time frame
index t. We will use e(t) as a guide to decide whether
a path is alive or dead. A path W} is considered alive
relative to an envelope, if

Lend(Wlk) Z e(te'nd(WJ{c)) -A

i.e. the log likelihood of the path at its most likely end-
ing time is no more than A below the envelope value.
If this condition is not satisfied a path is designated as
dead. Figure 3 shows some examples of alive and dead
paths relative to a given envelope.

The parameter A controls the width of the search.
Small values of A will result in a fast search with some
search errors; increasing A will reduce the number of
search errors at the expense of more computation.

Amongst the alive paths, we will choose the shortest-
best for extension. This means that amongst all the
alive paths, the one having the smallest value of tena(W{
will be chosen. If there is more than one shortest
path, then the one having the highest value L.nq(W¢)
amongst them will be chosen.

Once a path is chosen for extension, we will con-
struct a candidate list of words for this path. Each
word in the candidate list will result in a path that is
one word longer than the chosen path. For small vo-
cabulary systems the candidate list can be the entire
vocabulary. For tasks where the sentences are con-
strained by a small finite-state grammar, the candidate
list would contain all the words that can legally fol-
low the partial path. In large-vocabulary systems the
number of potential extensions of a path can be very

)

574

large. Since it is expensive to compute the acoustic
match probabilities for all possible extensions, we use
a fast match [9] to perform a preliminary pruning of
the set of successors to be evaluated.

3 THE ENVELOPE SEARCH
ALGORITHM

. Initialize PARTIAL to contain the null path.
Mark: BEST-COMPLETE to be non-existent.

. If BEST-COMPLETE exists

e then, initialize the envelobe to be the
profile of BEST-COMPLETE.
o else, set all envelope values to —co.

For each path Wf in PARTIAL
(in longest-best order)

e compare the most likely end time log likeli-
hood value Lm,g(Wlle) to the current envelope
value e(tena(WE)).

If Lona(WE) > e(tena(WE)) — A
then, mark this path alive and update
the envelope by including the profile of

this path in the envelope construction process.

else, mark this path dead.
4, If all paths in PARTIAL are dead

o then, terminate the search and output
BEST-COMPLETE as the recognized
output.

e else, choose the shortest-best path for exten-
sion, and remove it from PARTIAL.

For each word in the candidate list of this
path
— Make an extension.
If extended path is complete,
* then, compare to BEST-COMPLETE.
If new path is better then replace BEST-
COMPLETE with new path.

= else, insert new path in PARTIAL.
5. Go to step 2.

Each iteration of the search algorithm consists of
executing steps 2,3 and 4. Initially, the shortest-best
will be the null path. As the search progresses the
shortest-best path will typically get longer and longer.
However, the shortest-best path does not necessarily
get longer monotonically. This is because dead paths
are not discarded for ever. The dead or alive status of
each partial path is re-evaluated in each iteration. It
is possible for a dead path to become alive at a later

iteration of the search. This is because the envelope
value e(t) does not necessarily rise from one iteration
to the next. An alive path which contributes to the
envelope may later become dead, resulting in a low-
ering of the envelope, which in turn may cause dead
paths to become alive.

The search terminates when the envelope is iden-
tical to the profile of BEST-COMPLETE, and there
are no alive paths within A of the envelope.

The algorithm presented above allows for language
models with unlimited memory. However, speech recog-
nition systems often use finite-state language models
with limited memory. The algorithm can be easily
modified to take advantage of this to further reduce
the search. Path A is said to dominate path B if each
extension Aw has a higher log likelihood that the cor-
responding extension Bw. In this case, if path A is
in PARTIAL, then path B can be eliminated from
further consideration. In our implementation, before
inserting a path in PARTIAL, we check to make sure
that there is no other path in PARTIAL that ends in
the same language model state and has a higher value
of L,M(Wf). If such a path exists, then the new path
is not inserted in PARTIAL.

Minor modifications also make it possible to handle
acoustic models that incorporate right-context. Ini-
tially, when the acoustic match is performed for path
W right context information is not available for words
at the end of the path. We can temporarily use a
model that ignores right context or assumes some neu-
tral right context. If this path becomes the shortest-
best path and is chosen for extension, the acoustic
match can be re-evaluated in light of the right con-
text provided by each word in the candidate list.

Recognition results of a speech recognition system

that uses the envelope search can be found in Bahl et
al [10].

4 HISTORICAL NOTES

The origins of heuristic search are shrouded in the
mists of time. Some scholars point to an arcane refer-
ence in Genesis. After all, how did that darned serpent
find the forbidden fruit? Would the entire history of
mankind have been different if the search had failed?
One can only wonder ... However, revisionist schol-
ars claim that the first documented appearance of A*
was, in fact, over Bethlehem. Speaking of fruit — we
cannot ignore rumors that Isaac Newton discovered an
incredibly fortuitous tree search algorithm. Attempts
to replicate his results have not always been fruitful,
raising seeds of doubt among skeptics. We however,
attach little gravity to their comments. Even Holly-

575

wood went gaga over heuristic search in A* Is Born
(Gaynor 1937, Garland 1954, Streisand 1976). Fortu-
nately for the reader, lack of space prohibits us from
delving deeper into this subject.

REFERENCES

(1] N. Nilsson, Problem Solving Methods in Artificial
Intelligence, McGraw-Hill, New York, 1971.

[2]: G. D. Forney, Jr., “The Viterbi Algorithm,” Proc.
IEEE, vol. 61, pp. 268-278, 1973.

(3] L. R. Bahl, F. Jelinek and R. L. Mercer, “A Max-
imum Likelihood Approach to Continuous Speech
Recognition,” IEEE Trans. Pat. Anal. and Mac.
Int., vol. PAMI-5, pp. 179-190, 1983.

F. Jelinek, L. R. Bahl and R. L. Mercer, “Design
of a Linguistic Statistical Decoder for the Recog-
nition of Continuous Speech,” IEEE Trans. Inf.
Th., vol. IT-21, pp. 250-256, 1975.

D. Paul, “An efficient A* stack decoder algorithm
for continuous speech recognition with a stochas-
tic language model,” Proc. DARPA Workshop on
Speech and Natural Language, Harriman, NY, pp.
405-409, 1992.

X. Huang, M. Belin, F. Alleva and M. Hwang,
“Unified Stochastic Engine (USE) for Speech
Recognition,” Proc. IEEE ICASSP-93, Min-
neapolis, MN, pp. 11-636-639, 1993.

S. Austin, R. Schwartz and P. Placeway. “The
Forward-Backward Search Algorithm,” Proc.
IEEE ICASSP-91, Toronto, Canada, pp. 697-700,
1991.

H. Murveit, P. Monaco, V. Digalakis and J.
Butzberger, “Techniques to Achieve an Accu-
rate Real-Time Large-Vocabulary Speech Recog-
nition System,” Proc. Human Language Technol-
ogy Workshop, Plainsboro, NJ, pp. 393-398, 1994.

L. R. Bahl, S. V. De Gennaro, P. S. Gopalakr-
ishnan and R. L. Mercer, “A Fast Approximate
Acoustic Match for Large Vocabulary Speech
Recognition,” IEEE Trans. Speech and Audio
Proc., vol. 1, pp. 59-67, 1993.

L. R. Bahl, S. V. Balakrishnan-Aiyer, J. R. Belle-
garda, M. Franz, P. S. Gopalakrishnan, D. Na-
hamoo, M. Novak, M. Padmanabhan, M. A.
Picheny and S. Roukos, “Performance of the IBM
Large Vocabulary Continuous Speech Recogni-
tion System on the ARPA Wall Street Journal
Task,” Proceedings of this conference.

[4]

[5]

(6]

[7

[9]

[10}

