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ABSTRACT

The paper presents a Fast Segmental Viterbi Algo-
rithm. A new search strategy particularly effective for
very large vocabulary word recognition. It performs a
tree based, time synchronous, left-to-right beam search
that develops time-dependent acoustic and phonetic
hypotheses. At any given time, it makes active a sub-
word unit associated to an arc of a lexical tree only
if that time is likely to be the boundary between the
current and the next unit. This new technique, tested
with a vocabulary of 188892 directory entries, achieves
the same results obtained with Viterbi algorithm, with
a 35% speedup. Results are also presented for a 718
word, speaker independent continuous speech recogni-
tion task.

1. Introduction

The recognition of very large vocabularies, for auto-
matic directory services through the telephone line, is
a challenging research problem. For these applications,
the main problems are not only the extremely large per-
plexity of the task and the similarity of the vocabulary
words, but also the search complexity.

There are two main approaches for very large vocab-
ulary recognition. The first one is a two-step strat-
egy of fast lexical access, which first generates a list of
acoustically similar words, then rescores these candi-
date with more accurate models. The second one relies
upon phone look-ahead and beam search to reduce the
search space. Relevant examples of the latter approach
are the works on block Viterbi algorithm [4] and on
phoneme look-ahead [3, 6] for isolated word and con-
tinuous speech respectively. In this paper, following
the second approach, we present a novel Fast Segmen-
tal Viterbi Algorithm (FSVA) that uses a time syn-
chronous left-to-right beam search Viterbi algorithm,
without any block time delay. The search complexity
is reduced not only because we develop time-dependent
phonetic hypotheses, and carefully exploit the likeli-
hood of the units previously computed, but mainly be-
cause we make active the next subword unit at any

0-7803-2431-5/95 $4.00 © 1995 IEEE

560

given time only if that time is likely to be the loca-
tion of a boundary between the current and the next
unit segments. To decide the “likelihood” of a phonetic
unit boundary, we look ahead of the current frame, but
rather than using a threshold based look-ahead pruning
strategy [3, 6], we make active the next unit only if the
time boundary between the considered units reached a
“stable” location. Boundaries are detected by means of
a very simple and effective process, which rarely misses
the exact location of the boundaries, as determined by
Viterbi decoding.

Our recognition systems perform acoustic decoding by
means of a beam-search Viterbi procedure using a lexi-
cal tree to reduce both memory and search costs. Dur-
ing recognition, every arc in the tree is associated with
the Markov model of the corresponding subword unit.
The procedure scores all word transcriptions correspond-
ing to the terminal nodes that are not pruned after
last observation frame has been processed. The lexical
tree used for the isolated word experiments merges the
188892 entries that appear in the Italian general tele-
phone directory at least two times and includes 775874
arcs (versus 1628639 units of the linear lexicon) with a
potential search space of more than 2 million states.

2.

This work has been stimulated by two observations.
The first one is based on the analysis of the distribution
of the duration of the subword unit hypotheses gener-
ated by a classical beam-search Viterbi algorithm (VA)
while decoding an utterance. We observed that most
of the computational effort is spent expanding tree hy-
potheses having as their last decoded unit a segment of
3 frames: 3 frames is the minimum duration imposed
by the topology of our models.

The vast majority of these segments is, of course, in-
correct. Since every wrong segmental hypothesis gener-
ates, virtually at every time, other (wrong) hypotheses,
the number of short segment hypotheses grows consid-
erably. Although their growth is limited by the Dy-
namic Programming (DP) recombination and by the
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beam-search pruning strategy, the blind activations of
units affects the recognition time especially if the lexi-
cal tree is very large, or in continuous speech decoding.
The second observation is that in a very large lexi-
cal tree many arcs are associated to the same phonetic
unit. In our tree, for example, the same subword unit
appears in 2957 arcs on the average, while the most
frequent unit /i@/ - vowel /I/ with silence as its right
context - appears 68485 times since most Italian sur-
names ends by /I/.

From these observations it comes out that a search
strategy must try to reduce to a minimum the unit ac-
tivation times that are likely to be incorrect, and must
also use the likelihood of a unit previously computed for
every tree arc this unit is associated with. To achieve
both goals it is worth formulating the Viterbi algo-
rithm by a notation that explicitly takes into account
the boundaries between units rather than considering
the detection of these boundaries a useful by-product of
the search. This formulation has been introduced in [4]
. and [6] to exhibit the effect of the boundary between
phones and words respectively.

In the rest of the paper we will refer to a branch in
the lexical tree including the sequence of arcs ao, ay,
and a; associated with unit ug, u;, and u; respectively.
Moreover, we will refer to “unit u;” as a shortcut for
“the instance of units u; associated with arcs a;”.

Let 0;...0r be a sequence of observation frames and
let u belong to a set of U models, time 7 be the time
boundary between unit u; and u;;, or more precisely,
the start time of unit u;41, and let’s also define:

e pi(s,u), the log probability (likelihood) that the
best sequence of states s;1...s of unit u, with
1 < s < 5(u), and S(u) the final state of
unit u, produces the observation frames o, ...o0;.

o hi(u) = pt(S(u),u), the log probability that unit
u produces the observation frames o, ...0;

e H,(a;), the log probability of the sequence of arcs
that generated o5 ...o0;, with a; as last arc of the
sequence.

Our goal is a fast technique for computing the log prob-
ability Hr(a*) for every tree arc a* that ends in a ter-
minal node. Using the above introduced definitions,
the auxiliary function:

Kq(7,01,02) = H,_1(a1) + hy(ua) (1)

represents the log probability, as a function of time 7,
of the best sequence of arcs generating o0,...0;, with
a; as last arc of the sequence, and with 7 as boundary
between unit u; and uj.

H;(a3) can be computed recursively, for ¢ > 1, t being
the time of uz completion, by:

(2)

Hy(a2) = max Ki(,a1,a5)
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Figure 1: K.(r,/fe/,/eR/) as a function of 7, the time
boundary between unit /fe/ and /eR/ in an utterance of
word /FERRARI/.

and the best boundary between unit u; and u; by:
3)

This relation allows the correct boundary to be detect,
but, unfortunately, is not useful in this form, since it
is expensive to find the time boundary 7:(a;,a;3) that
optimizes Hi(az), for every path originating at the tree
root that is still alive at time . To reduce the com-
plexity of this optimization it is interesting to analyze
the behavior of K:(7,a1,az2), as a function of , after
setting to a fixed value the startup time of the previous
unit a;; this stable boundary is referred to in the fol-
lowing as 7o(ao,a1). Fig. 1 shows the set of functions
K.(7,a1,a3), as a function of 7 - 1p(ag,a1) < 7 < ¢
Recall that K;(7,a1,a3) gives the value of Hy(a;)
at time ¢ if the boundary between units a; and a; is
7. The unit a; and a; presented in this figure are /fe/
and /eR/, the initial units in the transcription of word
/FERRARI/, and the startup time of unit /fe/ is fixed
at frame 4; there is a function for each completion time
t of unit a3 (9 < t < 40), and a diamond marks the
coordinates of the point where each function reaches
its maximum value.

It is easy observing that this set of curves follows a
typical parallel pattern and that the maximum of each
function, corresponding to the best boundary between
the units, is stable for a wide range of the completion
time ¢ of unit /eR/. This is the typical behaviour of
these functions for every pair of units, even if we have
found a few counterexamples.

Another interesting feature of these functions is that
the diamond marker, corresponding to the maximum
of a function, before reaching a stable position, is lo-
cated at the edge of a curve K;(7,a;1,a;3). This edge
point identifies the boundary between unit u; and u;
corresponding to the minimum duration of unit uj.
This behavior is not surprising because, if the bound-
ary 7i(ag,a1) between the previous units is correct, as
long as t has not yet reached the true completion time

1i(a1,82) = arg:ggcht('r, ay,a3)
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Figure 2: Unit boundaries 7¢(ai, 6i+1) as a function of time
tin an utterance of word /PARISI/.

of unit uy, the observed frames are better recognized
by the model of unit u; rather than by the model of
unit uz. As a consequence, when it is not stable, a unit
boundary moves along a line parallel to the diagonal in
a plane whose z and y axes are the completion time ¢ of
unit a2 and 7¢(a1, a2), respectively. An example of this
plane, for an utterance of word /PARISI/, is shown in
Fig. 2.

3. Fast Segmental Viterbi Algorithm

To cope with the problems observed in the previous
Section, we propose a new fast search technique. Rather
than looking ahead for fast matching or for obtaining
a better pruning threshold as in [3], our approach ex-
pands the current path hypothesis ending in arc a;,
with the next arc a;41, only if the boundary between
the associated units u; and u;,; is likely to be located
at the current time frame.

Suppose that we have observed the sequence of input
frames 0;...0;—1, and that the likelihood of the hy-
potheses ending in arc a; at timet¢ —2,¢t— 1, and ¢
have been computed.

The basic idea of the FSVA strategy is to avoid ac-
tivating next unit a; at time t if the time boundary
Titmindur(uz)(1,@2) i8 not stable. Since it is stable
only if a local maximum of function Ky(r, a1, a3) is lo-
cated int = T mindur(u;)(31, @2), rather than perform-
ing the expensive search of equation (2), we activate
next unit uz of arc ag, at current time ¢, only if:

(4)

argmax K T,a1,a63) =1
il e A t+mtndu.r(u;)(’ 1, 2)

where mindur(uz) is the minimum number of input
frames that allow the Markov states of unit u; to be
traversed; mindur = 3 in our case for every unit, ex-
cluding the single state silence model.

If condition (4) is true, the segmentation boundary
Ti4mindur(ug) (@1, @2) i8 stable at time ¢ at least for two
time frames. Since Tyymindur(u,)(a1,82) =tis a poten-
tial correct boundary, we allow the activation of next
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unit at the current time performing the DP update
of the likelihood H:{mindur(u,)-1(@2) according to the
following equation:

Ht+min.du.r(u;)—1 (02)
Hi_1(a1) +
h:-{-mtndur(ug)- 1(‘“2)

Ht+mindur(u,)—1(a2) = max
Since next unit is being activated at current time t,
and it is completed at time t + mindur(uz) — 1, the
boundary 7 mindur(us)-1(a1,a2) is set to t.
DP updating of likelihood H:(a3) is also performed at
current time ¢, using the following equation:

Hy(az) = max(Hy(az), Hr, (a1) + B, (u2)  (5)

where 7, = 7_1(a1,a3) is the start time of umit u;
currently associated with hypothesis Hy(az).
Equation (5) can be rewritten as:

H(az) = max(He(az), Hi-1(a2) — h7 ) (ua) + b7 (u3))
6

we can use, thus, a time synchronous, left-to-right bea(m)1

search Viterbi algorithm to perform the recursion since

the needed information is related to the previous and

current frame only.

3.1. Consistency of FSVA

The strategy is not consistent since it can fail to detect

the correct boundary ro(a1,az) located in t, for two

reasons:

e 7(a;,az) is not stable

e condition (4) is true, but the maximum of func-
tion H,{mindur(u;)(@2) in (6) is obtained for the
second argument.

In the example shown in Fig. 2, our algorithm fails to
find a correct boundary located at frame 38 since the
boundary is not stable there. It finds instead an in-
correct boundary at frame 45, where a short “stable”
location exists. The analysis of the behavior of func-
tions Hy(az) and 7(a1, a3), presented in the Section 2.,
however, shows that probability of missing the correct
boundary is very low. To ensure that the boundaries
derived by FSVA and by Viterbi algorithm (VA) agree,
we performed a forced segmentation on each test utter-
ance by means of VA. Comparing the 96933 “correct”
boundaries with the ones generated by FVSA we found
that they perfectly agree 98.1% of the time. Moreover,
we found that almost always these errors affect a pair of
adjacent segments of the same word, and that the de-
viation from the correct boundary is just of one frame
for 1128 of the 1782 incorrect boundaries.



Viterbi FSVA

- Beam threshold 30 30 35 40

Inclusion rate (%) 87.8 | 86.7 | 88.0 | 88.8

Avg unit startup 6360 3913 | 5632 | 7496
per frame

Avg CPU time (sec) 3.7 1.7 t 24 | 3.8

Table 1: Recognition results with a 188892 word vocabulary

4. Experimental results

The Isolated Word recognition system that has been
used as benchmark is based on a total of 203 Dis-
crete Density Hidden Markov Models of subword units.
The test database includes a total of 12720 utterances,
collected through a PABX, of a set of 600 surnames,
pronounced by 120 speakers. The surnames in this
database were selected from the 188892 entries both
for their occurrence frequency, and also to assure a
large phonetic coverage. Table 1 presents the results
of the recognition experiments performed on a DEC
AXP 3000/500 workstation - the percentage of inclu-
sion rate refers to the top 50 candidates -. With respect
to the VA, a 54% speedup is obtained at the cost of a
slightly increase of the error rate using the same beam
search pruning threshold, while the same inclusion rate
is achieved saving 36% of the CPU time using a larger
threshold, or even better results are achieved using the
same average CPU time.

In the second set of experiments we tested the perfor-
mance of the FSVA with vocabularies of different size.
For a “small” 600 word vocabulary, the fixed overhead
due to the evaluation of time-dependent likelihoods
and the added complexity of the strategy increase the
search costs of FSVA with respect to VA, but for a vo-
cabulary size of more than 5000 words FSVA is faster,
other results can be found in [5].

We compared also our search based on the lexical tree
with a strategy that has some similarity with the ones
proposed in [1, 4]. The search is performed, in a first
step, on a graph which merges units that appear in the
same position within a word transcription (thus over-
generating the vocabulary). The output of this first
step is a lattice of unit hypotheses which are rescored
by means of a very fast backward A* lexical tree search.
We used graphs of m-gram units (with m = 1...3).
The results of these experiments show that a l-gram
graph does not give a good lexical representation since
it factorizes too much the lexicon and doubles the num-
ber of errors. For bigram and trigram units we observed
a very small reduction of the search space (13% and 1%
respectively), but this reduction does not correspond to
areduction of CPU time, which on the contrary doubles
with respect to the tree based approach. The reason

for this behavior is that many wrong hypotheses are
generated by the approximate lexical representations
that cannot be traded for the very small reduction of
the search space.

Finally, preliminary experiments have been performed
with a continuous speech system based on a total of
310 Continucus Density HMM of subword units, with
15 Gaussian mixtures per state, and without any lan-
guage model. It has been evaluated on 600 sentences
collected from 10 speakers in a controlled environment,
these sentences refer to a train timetable inquiry task,
with a vocabulary of 718 words [2]. In this case the
evaluation compares the complexity of the search for
the same performance in terms of word accuracy: the
average number of active units per 10 ms frames is more
than doubled for the Viterbi Algorithm with respect to
FSVA using the same beam search threshold. How-
ever, the reduction of search cost for the FSVA is 10%
only due to the “small vocabulary” and to the lack of
language model. We are presently applying FSVA to
continuous speech with bigram constraints, a task in
which the multiplication of word copies and the much
larger search space should better demonstrate the ef-
fectiveness of this strategy.

5. Conclusions

A fast search strategy for large vocabulary recogni-
tion has been presented that, using larger beam search
thresholds, is able to achieve, in less time, the same or
better results with respect to a Viterbi algorithm. It is
worth noting that the look-ahead strategy of [3] can be
directly included in our framework in conjunction with
our condition (4).
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