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ABSTRACT

We address the problem of explicit state and word du-
ration modeling in hidden Markov models (HMMs). A
major weakness of conventional HMMs is that they im-
plicitly model state durations by a Geometric distri-
bution, which is usually inappropriate. Using explicit
modeling of state and word durations, it is possible to
significantly enhance the performance of speech recog-
nition systems. The main outcome of this work is a
modified Viterbi algorithm that by incorporating both
state and word duration modeling, reduces the string
error rate of the conventional Viterbi algorithm by 29%
and 43% for known and unknown string lengths respec-
tively, for a speaker independent, connected digit string
task. The uniqueness of the algorithm is that unlike
alternative approaches, it adds the duration metric at
each frame transition (and not at the end of a state,
word or sentence), thus enhancing the performance.

1. INTRODUCTION

Conventional hidden Markov models (HMMs) implicit-
ly model the duration probability distribution of each
state p;(7) by a Geometric distribution, i.e. pi(r) =
al7}(1 — a;;), where i is the state, 7 is the duration
(r > 1), and ay; is the state self transition probability
[8]. This exponential distribution is usually inappropri-
ate. Instead, explicit modeling of the duration distri-
bution was shown [7], [8] to improve the performance
of speech recognition systems. In addition to that,
conventional HMMs do not include modeling of word
durations. Hence the decoding procedure might pro-
duce unrealistically short or unrealistically long word
durations. Explicit modeling of word durations rules
out such durations and thus results in performance im-
provements.

Several approaches to state duration modeling has
been proposed. In the Ferguson model [2] each state, %,
has an associated state duration probability d;(7), 7 =
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1,2,..., 74 where 73 is the largest duration allowed.
Ferguson incorporated the estimation of d;(r) into the
Baum Welch re-estimation algorithm. There are two
disadvantages to the Ferguson algorithm. The first is
the excessive computational requirements it poses. The
second is the excessive amounts of training data that
might be required to estimate all the duration param-
eters: each state ¢, has 73, duration parameters, and
sufficient statistics on each duration r needs to be col-
lected at each state, i, so as to estimate d;(7) reliably.
In order to accomodate the second problem, Russell
and Moore [10] and Levinson [6] suggested using para-
metric state duration distributions. {10] applied the

‘Poisson distribution while [6] applied the Gamma dis-

tribution. Although the second problem was eliminat-
ed, the first one was not. Rabiner et. al. [7],[8] suggest-
ed a postprocessor approach, in order to incorporate
duration modeling in a computationally efficient way.
Besides real time implementation difficulties, a major
disadvantage of the backtracking approach is that the
duration contribution to the standard Viterbi metric
is only added after candidate paths have been collect-
ed. Hence the correct path might not be one of these
candidates. A similar problem occurs in [4], since the
duration metric is only added at the end of the state
or word.

This work is focused on a practical approach to s-
tate and word duration modeling in HMMs, that avoids
the above mentioned problems. In section 2 we inves-
tigate possible parametric descriptions for state and
word durations. In section 3 we propose a modified
Viterbi algorithm that incorporates both state and word
duration modeling, and has essentially the same com-
putational requirements of the conventional Viterbi al-
gorithm. In section 4 we present recognition experi-
ments that demonstrate a significant reduction in the
string error rate, compared to the standard Viterbi al-
gorithm, for a speaker independent, connected digit
string task.



2. PARAMETRIC MODELING OF THE
DURATIONS

As we indicated in the previous section, parametric
modeling of state and word duration distributions re-
duce the amount of training data that is required for
proper training of the distributions. Hence parametric
duration distributions possess improved robustness fea-
tures. Since several parametric distributions have been
proposed in the past for duration modeling [6], [10], [7],
[8], we found it important to investigate which is the
most appropriate. For that purpose we used an HM-
M speech recognition system, that models each word
by an 8 state left to right HMM (the system will be
described in section 4). A supervised Viterbi segmen-
tation of the training set was carried out, and an his-
togram of the duration was collected for each state and
word, from which we obtained the empirical state and
word probability distributions. The Gamma distribu-
tion

P

L(p

(e > 1 and p > 0) was found to produce a high quality
fit to the empirical distributions, for describing state
and word durations. The Gauss distribution

expl{—az}zP! <z <o0o

p(z) =

1 2%
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produces high quality approximations for word dura-
tions, but is however inferior in its ability to describe
certain state durations. The Geometric distribution is
inferior to the Gamma distribution in its ability to de-
scribe both state and word durations.

Figure 1 displays the empirical duration distribu-
tion, and its Gauss, Gamma and Geometric fit for the
7’th state of the word ’seven’.

As can be seen, here the Gamma and Gauss fit are
both superior to the Geometric fit. Figure 2 displays
the same data for the 3’rd state of the the word 'oh’.

Here both the Gamma and Geometric fit are supe-
rior to the Gauss fit. Figure 3 demonstrates that both
the Gamma and Gauss fit are superior to the Geomet-
ric fit for describing the duration of the word ’seven’,

Note that the Gamma distribution is capable of de-
scribing both the monotonic character of the Geometric
distribution, and the unimodal character of the Gauss
distribution. Hence, the Gamma distribution is capa-
ble of describing both monotonic and unimodal distri-
butions. This capability is very desirable for proper
modeling of state and word durations. In addition, the
Gamma distribution assigns zero probability to nega-
tive z’s, which is appropriate for duration distribution-
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Figure 1: Duration distributions for the 7’th state of
the word ’seven’: a) empirical distribution (solid line)
b) Gauss fit (dashed line) ¢) Gamma fit (dotted line)
d) Geometrical fit (dash-dot line)
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Figure 2: Same as Figure 1 for the 3’rd state of the
word ’oh’
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Figure 3: Same as Figure 1 for the word duration of
the word ’seven’

s. This does not apply to the Gauss distribution. Fi-
nally, the Gamma distribution possesses slower decay
rate, ezp{—az}, which is more appropriate for dura-
tion modeling than the fast ezp{—%} decay of the
Gauss distribution.

Careful examination of the Kullback Leibler (KL)

distance measure defined for the densities p(z) and ¢(z)
by,

e,
q(z) 4

showed that the Gamma fit is almost always closer to
the empirical distribution than the other parametric
approximations examined, although the difference from
the Gauss distribution is small for word durations (but
not for certain state durations).

)

KL(pllg) = / p(z) log

To estimate the free parameters of the Gamma dis-
tribution a and p, note that the Gamma distribution

has mean and variance values given by, (e.g., [9l[p.
164]),

VAR{X} = &

B = :

Hence, o and p are estimated using the empirical ex-
pectation E(z), and empirical variance VAR(z) of the
duration, by

PO 25 0.0 Y i 0.
T Var{x} | VAR{x}
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3. A SYNCHRONOUS FRAME BY FRAME
IMPLEMENTATION

Our modified Viterbi algorithm keeps track of the du-
ration D, (t) of each state s at time ¢. Let M, denote
the maximal value of the Gamma distribution, at state
s, and let [(u) = log p(u), where p() here is the Gamma
density. The duration penalty, P, of making a transi-
tion from state s at time ¢ to state § at time £ + 1 is
given by,

0 if D;(t) < M; and $=s

P I(Ds(t+1)) —I(Ds(t)) if Dy(t) > M, and $=s
] U(Ds(1)) if D,(t) < My and § £ s
I(M,) if D,(t) > M, and § # s

The motivation is the following: before the duration
is M,, we do not penalize for remaining in the same
state (unlike the conventional Viterbi algorithm). Af-
ter the duration is M,, we penalize gradually, unlike
the backtracking approach, thus avoiding the problems
of the backtracking approach, mentioned above. Note
also that at the end of the state, at ¢g, the overall dura-
tion metric penalty is {(D,(%o)), as it should be. Word
durations are updated in essentially the same manner.

4. RECOGNITION EXPERIMENTS

For Recognition Experiments we used our continuous
word HMM based speech recognition system. The a-
coustic front end comprises an FFT based filterbank,
that calculates the energy within each of 18 overlap-
ping Mel scale filters spanning the frequency range from
200Hz to 3200Hz. These energies are then converted to
the first 9 cepstral values cg,ci,...,cs and their time
derivatives AcpAcy,. .., Acg, using a cosine transform
applied to the logarithm of the energies. The result-
ing 18 dimensional feature vector is modeled by a tied
mixture of diagonal covariance Gaussians [1], [3], using
a codebook of 200 Gaussians. The mixture size is 8.

Long term adaptive spectral equalization of the fil-
ter energies was shown to improve performance over d-
ifferent speakers and acoustic conditions, and was hence
incorporated to the system. Each word in the vocabu-
lary was modeled by one, 8 state, left to right HMM.

The training was performed using a variant of the
segmental K means algorithm [8], whose computation-
al complexity is significantly reduced compared to the
Baum Welch algorithm, and the performance is essen-
tially the same.

The decoding algorithm was a conventional Viterbi
algorithm for the baseline experiments and a modified
Viterbi algorithm incorporating state and/or word du-
ration modeling in the other experiments.



Ezperiment Training Set | Testing Set

UL | KL UL | KL

No duration
modeling 3.94 | 1.84 4.77 | 2.20
State Duration
modeling (in test) | 2.32 | 1.24 | 2.86 | 1.60
State and word

duration modeling
(in test) 2,23 | 1.15 | 2.78 | 1.59
State and word

duration modeling
(train and test) 209116 [273[1.56

Table 1: String error rate results for the Training and
Testing sets, both for Known Length (KL) Strings and
for Unknown Length (UL) Strings

The speech database was the speaker independent,
high quality connected digits recorded at TI [5]. The
database is divided intotraining and testing digit strings
uttered by 225 adult talkers (we did not use the sen-
tences uttered by children talkers). The first experi-
ment was a baseline experiment carried out using the
conventional Viterbi algorithm with no duration mod-
eling (i.e. implicitly using a Geometric distribution for
the duration). In the second experiment state duration
modeling was added, after estimating the free param-
eters of the Gamma distribution from the mean and
variance of the duration at each state, from a super-
vised Viterbi segmentation of the training set. All other
parameters were taken from the estimation performed
at the baseline experiment. In the third experiment
word duration modeling was added to the second ex-
periment. In the last experiment, both training and
testing were performed with duration modeling. Ta-
ble 1 summarizes the string error rate results obtained.
As can be seen, from the results of the testing set, our
modified Viterbi algorithm reduces the string error rate
by 43% for the unknown string length case, and by 29%
for the known string length case. State duration is the
dominant source of improvement. Further addition of
word duration modeling or further training, incorporat-
ing our enhanced Viterbi algorithm into the segmental
K means algorithm, does not yield any significant ad-
ditional improvements.
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