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ABSTRACT

This paper argues that many HMM model inaccura-
cies are a direct consequence of the fact that the HMM
is a one dimensional stochastic model applied to a two
dimensional process. Thus we argue that a 2D stochas-
tic process, known as a Random Markov Field (MRF)
should perform better. We describe a training method
for MRF's and analyze its convergence behavior.

1. INTRODUCTION

Speech recognition is a two dimensional pattern recog-
nition process. All commonly used low level represen-
tations of a speech signal (filter bank, FFT, LPC, au-
tocorrelation, cepstrum) are two dimensional; one di-
mension in the time the other in the ‘frequency’ do-
main. (For simplicity we will refer to the non-temporal
domain as the ‘frequency’ domain, even though, de-
pending on the representation, it may not really be
frequency. Similarly the components of one observa-
tion vector will be referred to as frequency bins even
though they may actually have arisen from some other
transform such as cepstrum.)

On the other hand Hidden Markov models, which
are commonly used as pattern recognizers, are essen-
tially one-timensional models. Fig. 1(a) makes this
clear. Here the nodes labeled o; are observation vec-
tors and the nodes labeled @, are random variables
that range over the set of all possible states. The hor-
izontal and vertical lines express the statistical depen-
dencies that are implied by the Markov assumption.
This representation of a Markov model is to be clearly
distinguished from the much more common one shown
in Fig. 1(b) in which the states are thought of as sites
to be visited by a stochastic finite state machine. We
will not use Fig. 1(b) and only included it here to avoid
confusion.

Going back to Fig. 1(a) we can therefore regard the
HMM as a one dimensional sequence of random vari-
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pixels (frequency bins). To perform this matching, a
2D to 1D mapping has to be performed at some level.
In the early days this was achieved by vector quantiza-
tion (VQ), nowadays this mapping is usually performed
in a more subtle way using continuous HMMs. Never-
theless a number of modeling errors occur as a direct
result of this dimensionality mis-match:

¢ Relationship of neighboring components in the
frequency domain: A vector with high energy in bin
¢ should be similar to a vector with high energy in bin
i+ 1, all other bins being equal. However the VQ or
continuous HMM formulation does not take the order-
ing of frequency bins into account. Any similarity of
neighboring components thus has to be learned from
examples during training. This greatly increases the
amount of training data required to obtain robust mod-
els.

¢ Relationship of neighboring components in the
time domain: Even if the neighborhood relationship
in the frequency domain can be learned by present-
ing many examples, we loose modeling accuracy in the
temporal domain. Suppose we have learned that for a
given phoneme, say /a/, high energy occurs either in
bin ¢ or i + 1. Now, if we observe an /a/ with high
energy in bin ¢ in frame ¢ we ought to be able to pre-
dict that in frame ¢t + 1 the high energy also occurs in
bin ¢ rather than ¢+ 1. However with current HMMs
this 1s 1mpossible, for at the state level of the HMM
bins ¢ and ¢ + 1 are essentially ‘mapped together’ so
discrimination between the two is no longer possible.
What i1s required is a two dimensional stochstic model

that takes correlations in both dimension into account.

ables that is matched to a two dimensional array of Such models are known as Markov Random Fields (MRFs).
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2. PREVIOUS WORK ON MRFS
MRFs have mainly been studied for image restaura-
tion, where algorithms for finding maximum a poste-
riori probability (MAP) estimates were developed (eg.
[4, 8]). These models are parameterized with only a
few parameters and some algorithms, exploiting special
cases of symmetry, have been proposed for their estima-
tion (1, 5, 6]. These algorithms are not applicable for
the pattern recognition tasks required for speech recog-
nition. Zhao and Atlas [9] applied Gibbs distribuitons
to speech recognition. However their work considers
only a one dimensional MRF, which is equivalent to an
HMM, so it does not address the modelling problems
of HMMs described above.

o

3. MARKOV RANDOM FIELDS

In order to improve modeling of the 2 dimensional speech
signal we require a two dimensional stochastic process
in place of the HMM. Such processes are known as
Markov Random Fields (MRFs). A simple MRF is
shown in Fig. 2. We have a two-dimensional array of
(unobserved) states X; on top of a 2 dimensional array
of observed variables Y;. The Y; can be considered as
the low level speech representation. Each X; takes as
values one of N discrete states. An MRF requires the
definition of a neighborhood relation between the un-
observed nodes. In this paper we will just be concerned
with the nearest neighbors, which are linked by edges
in Fig. 2. Let ¢ be the index of some variable and let N;
be the set of all nearest neighbor indices. The Markov
assumption in two dimensions is formulated as:

Y > :

P <X,» ) =P (x
(1)

i.e. only the nearest neighbors of X; affect X;.

X; Y;
allj #£4 * allj

X;
JEN;

Unfortunately a MRF can not be parameterized by
a set of conditional probabilities, as is the case with
HMMs and the efficient Baum-Welch algorithm does
not exist.
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3.1. Parameterization of MRF

It is well known that the joint probability distribu-
tion of a MRF with a neighborhood relation as defined
above is given by Gibbs distribution:

K

> Us( X,,.\)+Z\’(\ Y))

JEN;
Here Z is a normalization constant, known as the par-
tition function and Uj;, V; are potential functions. We
will assume translational invariance in both the time
and frequency domain and hence V; is independent of
¢+ and this index will be dropped from now on. Simi-
larly, under the invariance assumption, there are only
two U functions one for horizontal and one for vertical
neighbors which we will denote Uy and U/y. Thus the
choice of the functions Uy, Uy and V defines the prob-
ability distribution of the MRF. Since the state-space
1s discrete we can parameterize Uy as a matrix of pa-
rameters one for each state combination (similarly for
Uy). However since Y; is a continuous variable we pa-
rameterize exp(V') by a set of N Gaussian distributions
(one for each state that X; can assume).

PX,Y) =5 e\p ( 2)

3.2. Calculation of posterior distributions for
unobserved variables

This is the problem solved by the forward-backward
or Viterbi calculations in HMMs. For MRFs these
methods cannot be applied. However a number of well
understood algorithms have been developed, the main
ones being based on stochastic relaxation [4] and the
mean field theory [8].

3.3. Parameter estimation for MRF

This problem is as yet unsolved for general MRFs. The
contribution of this paper lies in the provision of a
training algorithm for the MRF model described above.

We will describe a method based on the EM-algorithm
(3] using ideas from the Re-normalization group theory
of statistical physics [2, T].

The EM algorithm is an iterative parameter esti-
matton procedure in which we first estimate the unob-
served data using some previous parameter estimates
(E-step) and then calculate the new parameter esti-
mates by finding the ones that maximize the likelihood
of the estimated unobserved data (M-step). Denote ©
the old parameters and © the new parameters. The
E-step amounts to calculating Ps(X|Y), which we can
do using either the stochastic relaxation or mean field
methods mentioned above. For the M-step. the new



set of parameterized Gaussians in the V(.,-) poten-
tial function can be obtained just as in the continuous
HMM case.

The difficulty lies with the estimation of the Ug and
Uy matrices. It can be shown that the maximization
of the M-step is obtained if we can find © such that
Po(X) = T\"l,— Sy Pa(X]Y) where the sum is over all
Ny training patterns Y. A method for finding such a
© will now be described.

Suppose the sites are numbered as in Fig. 2, i.e.
such that even and odd numbers form a checkerboard
pattern. Then by conditioning on the even numbered
sites we can use the Markov assumption to obtain

P(X1,Xa,..)
P(Xa, X4, .. )P(X1, X3, | X2, X4, ..
P(XQ,;Y:.&, . ) XP(Xlle,XG)

x P(X7|Xs, X2, X3, X12)

x P(Xo|Xs, X4, X10, X14) - -

P(X)

)

All the even numbered sites form a rectangular lattice
(inclined at 45°) of a coarser resolution. We assume
that it is Markov, translationally invariant and can be
parameterized by the Gibbs distribution

Y Un(X:,X;))

down

1 .
P(Xeven) = 77 exp(Y_ Uu(Xi, Xj) +
up

where the first sum is over all pairs of sites in which
X is to the north-east of X; and the second sum over
all pairs where Xj is to the south-east of X;.

Suppose that we have already managed to obtain
parameter estimates for the Uy and Up matrices at
the coarser resolution. To obtain estimates for Uy and
Uy we proceed as follows: Using the most likely state
allocation obtained by the stochastic relaxation algo-
rithm we find the statistic S(ko, kw, knv, ke, ks) de-
scribing the total number of times state ko occured
surrounded by the states kw , kv, kg, ks at the nearest
neighbor sites. From: this after normalization and suit-
able smoothing we obtain the quantity Q(kolkw , kn, kg
describing the estimated conditional probability of state
ko occuring in the given context. We now choose Uy
and Uy such that

exp (U (kw, ko) + Un(ko, kg) + Uv(ks, ko) + Uv (ko, kn)

(3)

v ks)

- I(Uy(kw,kn) + Uy(ks,ke) + Up(kn,ke) + Up (kw, ks)))

= Q(kolkw, kn, kg, ks)
(4)
If we substitute this expression into equation 3 to-
gether with the Gibbs distribution for the even num-
bered sites, we obtain after some re-arrangement

P(X) = exp(d_ Un(X:, Xj) + Y Uv(Xi, X;)

hor ver
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i.e. we succeeded in finding suitable Uy and Uy para-
meters. Moreover these are chosen such that the par-
tition function is unity. Eq. 4 1s difficult to solve in
closed form. Here we use gradient search technique
which minimizes the square of the error.

We have thus reduced the problem of finding Uy
and Uy to that of finding Uy and Up at a coarser
level. We can repeat this procedure and reduce to even
coarser grids. At the coarsest level that we wish to
consider, we have two possibilities to initiate this in-
ductive procedure: (1) If the lattice is so coarse that
it constitutes a singly connected line of sites, we may
use the Baum-Welch algorithm, as this is a one dimen-
sional model. (2) Alternatively we may assume that
there is no longer any statistical dependence between
neighboring sites. Under this assumption all sites are
to be treated as independent and the parameters of the
potential function can easily be found. In the experi-
mental work we used the second approach.

4. PATTERN DISCRIMINATION USING
MRFS

There are several ways in which MRFs can be used as
pattern discriminators. In this paper, we use a small
number of states which are shared by all phoneme mod-
els. Each phoneme model has its own Uy and Uy ma-
trices. The model that explains the data with highest
likelihood 1s selected.

5. EXPERIMENTAL WORK

We performed a number of experiments to verify that
the parameter estimation procedure described herein
works satisfactorily.

For the experiments we used 16 cepstral and delta
cepstral coefficients of speech data at a frame rate of
100Hz as the observed data Y. The ‘frequency’ do-
main hence consisted of 16 vector valued components,-
each component being a cepstrum and corresponding
delta cepstrum coefficient. exp(}’) was modeled by a
2-variate Gaussians for each state with full covariance
matrix.

5.1. Accuracy of equation 4

We first investigated how accurately @ could be ap-
proximated using the gradient search estimation proce-
dure. For this purpose we trained models of the vowel
/a/ with 2,3,4,5,6 states. The average estimation errors
for these approximation at various levels of coarseness
are given below (the coarseness-level is indicated by the
Euclidean distance between the nearest neighbor sites):



2 3 4 5 6

4 15% | 92% | 4.3% | 22% | 1.2%
282 | 17% | 11% | 5.0% | 2.7% | 1.5%
2 15% | 12% | 7.1% | 4.1% | 2.4%
141 | 17% | 14% | 7.7% | 42% | 2.7%
1 16% | 12% | 94% | 7.1% | 4.6%
The numbers suggest that the ¢ tensor can indeed be
accurately approximated using the gradient search, if
a sufficient number of states is used. Since in real ap-
plications more than 10 states are likely to be used the
estimation error should not be significant.

5.2. Convergence of the parameter estimation
procedure

The EM algorithm is guaranteed to converge monoton-
ically. However we are approximating the algorithm in
three places: (1) use of stochastic relaxation with a fi-
nite cooling schedule, (2) estimation of @ tensor, (3)
boundary effects of MRF. Thus the convergence of the
algorithm needs to be checked empirically. The follow-
ing graph shows a plot of the total Gibbs potential of
the training data (equivalent to log likelihood) during
a training run with 6 states and 50 parameter updates
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Even though convergence is not strictly monotonic, due
to the approximations mentioned above, we observe a
‘fairly monotonic’ behavior.

5.3. Discrimination experiments

As further evidence for the utility of the parameter es-
timation procedure rudimentary discrimination experi-
ments have been carried out with two phoneme models
(/a/ and /i/). The two models were trained on 10 ex-
amples each and tested on 5. Perfect discrimination
was observed in the test.

6. CONCLUSION

A 2 dimensional stochastic process instead of an HMM
has the advantage of much more accurately modelling
the signal at the expense of more complicated training
and decoding schemes. We have provided a workable
MRF training algorithm and demonstrated its stability
and convergence. Many more engineering choices will
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have to be made before a working speech recognition
system can be realized which utilizes this technology.
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