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ABSTRACT

The aim of the research described in this paper is to overcome
important speech-modeling limitations of conventional hidden
Markov models (HMMs), by developing a dynamic segmental
HMM which models the changing pattern of speech over the
duration of some phoneme-type unit. As a first step towards this
goal, a static segmental HMM [3] has been implemented and
tested. This model reduces the influence of the independence
assumption by using two processes to model variability due to
long-term factors separately from local variability that occurs
within a segment. Experiments have demonstrated that the
performance of segmental HMMs relative to conventional HMMs
is dependent on the “quality” of the system in which they are
embedded. On a connected-digit recognition task for example,
static segmental HMMs outperformed conventional HMMs for
triphone systems but not for a vocabulary-independent
monophone system. It is concluded that static segmental HMMs
improve performance, as long as the system is such that the
independence assumption is a major limiting factor.

1. INTRODUCTION

In the HMM approach to speech recognition, assumptions are
made which are clearly inappropriate for modeling speech
patterns.  The independence assumption states that the
probability of a given acoustic vector corresponding to a given
state is independent of the sequence of acoustic vectors preceding
and following the current vector and state. It is also assumed that
a speech pattern is produced by a piece-wise stationary process
with instantaneous transitions between stationary states. The
model thus ignores the fact that a speech signal is produced by a
continuously-moving physical system (the vocal tract). These
erroneous assumptions can be overcome by using a segment-
based model, characterizing dynamic behavior over several
consecutive frames. Such models include the dynamical system
model of Digalakis, Rohlicek and Ostendorf {1], and the
continuous-time formulation of HMMs proposed by Saerens [2].

At the Speech Research Unit we are extending the basic HMM
formalism, together with its associated mathematical theory, to
derive a dynamic segmental HMM which overcomes both of the
limitations mentioned above. A segmental HMM framework has
been developed to allow comparison between alternative models
of speech dynamics. As the first stage towards this goal, a static
segmental HMM [3] has been implemented to reduce the impact
of the independence assumption, which should provide some
modeling advantages over conventional HMMs. However,
substantial improvements would not be expected until a model of
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the dynamics is incorporated. A similar static segmental model
has been studied by Gales and Young [4], who actually reported
slightly worse performance than that obtained with conventional
HMMs. In the current study, experiments have therefore been
carried out with the aim of thoroughly understanding the behavior
of static segmental HMMs in different situations, prior to
incorporating a dynamic model.

2. A STATIC SEGMENTAL HMM

In a conventional HMM, the statistical process associated with a
state is defined by a single probability density function (pdf),
which typically has to accommodate two quite distinct types of
variability: long-term variations such as speaker identity and
chosen pronunciation of a speech sound (extra-segmental
variability), and short-term variations which occur within a
segment as a result of the continuous articulation process and
other random fluctuations (intra-segmental variability). When
combined with the independence assumption, the result of using a
single pdf is that the model allows extra-segmental factors such
as speaker identity to change in synchrony with the frame rate of
the acoustic patterns. The problem can be considerably reduced
by using a segmental HMM which has an underlying semi-
Markov process [5] to model speech at the segmental level and, at
the state level, uses separate models for extra-segmental and
intra-segmental sources of variability. This allows extra-
segmental factors to be fixed throughout a state occupancy. The
Gaussian segmental HMM (GSHMM) is summarized below.

Extra-segment variation associated with state ©; is characterized
by a Gaussian pdf N(,.y), termed the state target pdf. On
arrival at state o;, a target ¢ is chosen randomly according to this
pdf. Any one target is described by a Gaussian pdf with fixed
intra-segment variance 7;. A duration D; is chosen randomly
according to the pdf d4; and a sequence of vectors is generated
randomly and independently according to the target pdf Ne.s).
Given a sequence of observation vectors y=y,,...,y;, the
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where ¢ denotes the optimal target, which is the value of ¢ that

maximizes the probability of the observations. It can be shown
that the value of ¢ is given by
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The standard dynamic programming approach to recognition can
easily be extended to segmental models, and it has been shown by
Russell [3] that a Baum-Welch-type re-estimation process can be
derived for the GSHMM parameters.

3. INITIAL SEGMENTAL HMM EXPERIMENTS

3.1. Speech Data

The first experiments were performed on speaker-independent
recognition of airborne reconnaissance mission (ARM) reports,
using a 497-word vocabulary. Three reports from each of 61 male
speakers were used for training, and three reports from a different
10 male speakers for testing. The speech was analyzed using a
critical-band filterbank at 100 frames/s, with output channel
amplitudes in units of 0.5 dB, converted to an eight-parameter
Mel cepstrum and an average amplitude parameter. Time
derivatives were not used, as at this stage the aim was to
investigate basic segmental modeling without any dynamics.

3.2. Model structure

Three-state context-independent monophone models and four
single-state non-speech models were used (with single-Gaussian
pdfs), as a baseline for comparisons between segmental and
conventional HMMs. A simple left-to-right model structure was
used, including self-loop transitions. The GSHMMs were
minimally different from standard HMMSs: self-loop transitions
were retained to allow the models freedom to represent each
phone by as many ‘segments’ as required for the best match. In
addition, all segment durations were assigned equal probability
and duration distributions were not re-estimated.

3.3. Training procedure

The parameters of the conventional HMMs were initialized based
on a uniform segmentation of each training utterance. The means
and extra-segment variances of the GSHMMs were initialized in
the same way, with all intra-segment variances being set to 0.5
(in dB-related units as defined by the transformed filterbank
amplitudes). Figure 1 shows that the segmental training algorithm
appears to operate correctly: probability increases with number of
iterations, and the optimized probability of the training set is
greater for segmental than for conventional HMMs. A segment
duration of five frames is sufficient to provide a considerable
difference, and therefore all segmental recognition experiments
reported in this paper used a maximum segment duration of five.

3.4. Recognition results

An initial evaluation was conducted on a single spoken ARM
report, with the aim of verifying that the segmental HMM
recognition algorithm was operating correctly. For connected
word recognition with no explicit syntax and a word transition
penalty of 30 (previously found to be appropriate for this task),
conventional HMMs gave a word accuracy of 40.4%, whereas the
segmental HMMs gave only 17.5%. In view of the potential
importance of model initialization strategy, a second experiment
was tried in which the means and extra-segment variances of the
segmental HMMs were initialized from the means and variances
of trained conventional HMMs. This set of segmental models
gave an improved GSHMM word accuracy of 31.6%, which is
still much worse than the conventional HMM result. These very
poor results were unexpected, and are much worse than the
results reported by Gales and Young {4] with a similar model.
Further experiments were therefore carried out to investigate the
cause by studying a very simple segmental framework.
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Figure 1: Log Probability of the ARM training set as a function
of iteration number for conventional HMMs and for segmental
HMMs with maximum segment durations of 5,7, 10 and 15.

4. RELATIONSHIP WITH VFR ANALYSIS

The GSHMM can be interpreted as an extension and integration
of variable frame-rate (VFR) analysis and HMMs [3). In its
simplest form, the VFR algorithm removes vectors from an
observation sequence, based on a distance between the current
vector and the most recently retained vector. Observations are
discarded if the distance is below a threshold, so compressing
quasi-constant regions into one observation. It has been
demonstrated that this form of VFR analysis can lead to improved
recognition performance [6]. Experiments were therefore carried
out to assess the effect of VFR analysis for the task and model set
described in Section 3, comparing performance with that of a type
of segmental HMM which effectively performs VFR analysis.

4.1. Performing VFR analysis with a segmental HMM

In segmental HMM terms, the single observation vector can be
regarded as the target for the quasi-stationary segment which it
replaces, while the threshold and the distance metric together
play the role of the intra-segmental pdf. Thus an integrated form
of VFR HMM recognition can be performed with segmental
models, by modifying the definition of the optimal target to be the
segment mean, and replacing the Gaussian intra-segmental pdf by
a uniform pdf with radius specified by a threshold parameter.
This segmental VFR scheme differs from conventional VFR
approaches only in that the retained information is the mean
rather than the first observation, and in that the segmentation is
integrated into the dynamic programming process, rather than
being performed as a pre-processing stage.

4.2. Recognition results

Based on the single ARM report used in the initial experiments,
figure 2(a) illustrates performance with both conventional VFR
and the segmental VFR HMM as a function of VFR threshold.
For monophone models, performance of both systems degrades as
threshold increases. The slightly faster degradation of the
segmental system is to be expected, as this system measures
distance from the segment mean instead of the initial segment
vector. Thus, for a given threshold, segmental VFR permits more
compression than conventional VFR. The poor performance of
both VFR systems on this report is important, as it suggests that
any form of segment-based approach will perform poorly on this
data and model set. When the experiment was repeated using
triphone models, the results show the expected performance
improvements at low VFR thresholds, followed by a fall in
performance for larger values which permit too much
compression. The pattern of results is the same, although less
extreme, when taken over the complete ARM evaluation set (see
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Figure 2: Word accuracy as a function of VFR threshold for conventional VFR analysis and VFR segmental HMMs.

figure 2(b)): there are some improvements with triphones but not
monophones. The segmental VFR HMM shows similar benefits
to the conventional VFR system, so demonstrating that there is no
intrinsic problem with a segment-based model whereby the
segmentation is integrated into the dynamic programming.

4.3. Discussion

The VFR results suggest that, for reasonably good models (i.e.
task-dependent  triphones), the temporal independence
assumption does indeed limit the performance of conventional
HMMs. For a simple monophone system however, the
disadvantage of discarding data (which happens explicitly in VFR
and implicitly in segmentai HMMSs) outweighs any modeling
advantage. From studying distance scores, it became apparent
that the discrimination ability of the models was very poor. All
the data frames were therefore required to contribute individually
to the distance calculation in order to obtain maximum
cumulative discrimination. It seems probable that this is the
reason for the poor performance of both conventional and
segmental VFR schemes with monophone models.  The
possibility that a similar pattern might be seen for the full
GSHMM was therefore investigated by performing comparative
experiments between segmental and conventional HMMs for
systems with varying degrees of modeling sophistication.

5. FURTHER SEGMENTAL HMM EXPERIMENTS

These experiments used the simpler task of connected digit
recognition, to allow faster experiment turn-around time and
easier analysis of recognition errors. Experiments were carried
out with vocabulary-dependent versus vocabulary-independent
training and context-dependent versus context-independent
models. Using single-Gaussian models, the performance of
segmental HMMs was compared with that of conventional
HMMs with and without VFR analysis. As the segmental models
require an increased number of parameters over conventional
HMMs, comparisons were also carried out with two-component-
mixture HMMs, which use more parameters than single-Gaussian
models while retaining the conventional model format.

For many conditions, the results were improved by the use of a
word transition penalty. Although the precise value of penalty
was not critical, it was found that the performance was noticeably
worse if the penalty was a long way from the optimum value.
The best value was dependent on the type of training data used
and, to a lesser extent, on the type of models (single-Gaussian
HMM, two-component-mixture HMM or GSHMM). Results are
quoted with the best word transition penalty for each condition.
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5.1. Speech data

The test data were three lists of 50 digit triples spoken by each of
10 male speakers. Vocabulary-independent training was based on
recordings of 225 different male speakers each reading 10
phonetically-rich sentences. The data for vocabulary-dependent
training were taken from the same 225 speakers, each reading 19
four-digit strings.

5.2. Training procedure

The single-Gaussian HMM monophones were initialized from a
uniform segmentation of the training data, and trained with five
iterations of Baum-Welch re-estimation. The resulting models
were used to initialize both two-component-mixture HMMs and
GSHMMs. For the mixture models, the initialization used the
conventional approach of splitting the single component into two
and perturbing the means slightly. In the case of the GSHMMs,
the initial values for the means and extra-segment variances were
taken from the HMM means and variances. All intra-segment
variances were initialized to 0.5 (in appropriate dB-related units).

For all types of HMM, the relevant monophone models were used
to initialize triphone models which were then trained with three
iterations. When performing recognition with the vocabulary-
independent triphones, any triphones which had not occurred in
the training data were replaced by the relevant monophone.

5.3. Recognition results

Table 1 shows percentage word accuracy using a range of training
conditions, for segmental models compared with the different sets
of standard HMMs. In all cases, using VFR analysis improved
the performance of the conventional HMM. For all conditions
except the vocabulary-independent monophone training, the
segmental HMMs perform better than the conventional HMMs
even with optimum VFR analysis. The segmental-HMM word
accuracy is similar to that obtained with two-component-mixture
conventional HMMs: the mixture models perform slightly better
for digit-trained triphones, but the segmental models are better
for the digit-trained monophones and sentence-trained triphones.

training monophone triphone

data std 2 mix| std 2 mix

sentences| 82.4 | 846 | 77.7 | 85.6 | 83.1 | 85.0 | 88.5| 87.6

digits | 82.3 | 84.3 | 87.3 | 86.8 [ 86.6 | 88.2 | 89.3 | 89.9

Table 1: Percent word accuracy on connected-digit recognition,
for segmental compared with standard HMMs with and without
VFR analysis, and two-component-mixture standard HMMs.

std vfr| seg std vir| seg




5.4. Discussion

Effect of modeling sophistication on GSHMM performance
The GSHMMs have performed better than the single-Gaussian
conventional HMMs for both sets of triphones and for the digit-
trained monophones. With digit training, even the “monophone”
models will have been trained in only the appropriate contexts
and the “triphone” models will in fact be word-dependent. It
therefore appears that, as postulated in Section 4.3, the full static
segmental HMM offers advantages when the acoustic
representations in the models are reasonably accurate and so the
independence assumption is a major limiting factor. The likely
explanation is related to the balance between the extra-segmental
probabilities and the intra-segmental probabilities, as discussed
in the following paragraph.

In conventional HMM-based classification, the probability of any
model having produced a particular utterance of length T is
obtained as the product of exactly T frame-state probabilities. In
a segmental model however, any one segment probability consists
of the product of two different types of probability and different
explanations of the data may use different numbers of the two
types (depending on the preferred number of segments).
Recognition performance is therefore dependent on the correct
balance between the two types of probability contribution. In the
case of both the segmental ARM monophone models and the
segmental vocabulary-independent monophone models, this
correct balance had apparently not been achieved: there was a
strong tendency to favor long segment durations over the
sometimes short durations which were required for correct
recognition, due to the penalty of an additional extra-segmental
probability outweighing any benefit from higher intra-segmental
probabilities. It is hypothesized that this imbalance in the
segmental models arose due to differences in the extent to which
the two types of distributions fitted the modeling assumptions:
with speaker-independent, context-independent models, the
extra-segmental distributions will not be well-modeled by a
single Gaussian, whereas the intra-segmental distributions should
fit quite well to the Gaussian assumption. When context-
dependent models are used, a single Gaussian is not so
inappropriate for modeling the extra-segmental distribution, and
the trained segmental models show a better balance between the
two types of probability.

Comparing GSHMMs with conventional VFR

For instances where the segmental HMMSs offer better
performance than the conventional HMMs, this advantage is
greater than that obtained from applying VFR analysis to the
HMMs. This finding implies that, provided a useful model can
be obtained, it is better to actually model the relationship
between observations within a segment than to simply condense
them into one observation. It is interesting that the vocabulary-
independent  monophones  showed some  performance
improvements with VFR analysis but not with GSHMMs. It
therefore appears that the simple VFR approach of discarding
observations can be beneficial with a lower-quality system than is
required for the segmental modeling to be successful.

Comparing GSHMMs with two-component-mixture HMMs

It is not surprising that the use of an additional mixture
component has improved the performance of the conventional
HMMs, as this provides more parameters to describe the
extensive variability which will not be well-modeled by single-

Gaussian distributions. The second mixture component provides
a different type of modeling improvement to that offered by
segmental models: additional parameters are used to improve the
approximation of each state distribution rather than to constrain
the underlying model for the nature of speech variability. In some
respects, the mixture HMM therefore allows better modeling of
inter-speaker variability than is possible with a single-Gaussian
extra-segmental distribution. It should also be noted that the two-
component-mixture models use more parameters per state (two
sets of means and two sets of variances) than the GSHMM:s (one
set of means and two sets of variances). In view of these aspects
of the mixture approach, it is encouraging that the GSHMMs
provide a similar level of performance (except in the case of
vocabulary-independent monophones). Interestingly, the
GSHMM system actually performs better than the mixture system
in the case of the digit-trained monophones, where there should
be no danger of insufficient examples to train the required
numbers of parameters. The improvements from using GSHMMs
rather than conventional HMMs are therefore not simply due to
increasing the number of model parameters, but result from the
more appropriate nature of the underlying model.

6. CONCLUSIONS

A static segmental HMM has been shown to improve recognition
performance over that obtained with conventional HMMs,
provided that modeling is sufficiently accurate for the
independence assumption to be a major limitation on
performance: if there are other fundamental restrictions on
modeling capabilities, these have an overriding influence and it is
not possible to derive a useful static segmental model. This is
probably the cause of the poor results reported by Gales and
Young [4], who used segmental monophones to model TIMIT
data. Having gained an understanding of the modeling tasks for
which segmental models are able to operate correctly, possible
refinements are being investigated: in particular, model
initialization strategy and the effect of training duration
distributions. The next stage is to incorporate a model of speech
dynamics, which should enable the full advantages of the
segmental framework to be achieved.
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