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ABSTRACT

Phonetic context was used to predict the durations of

phones using a decision tree. These predictions were
used to calculate context dependent HMM transition
probabilities for these phone models, which were used
to decode telephone conversations from the Switch-
Board corpus. We observed that the duration mod-
els do not appreciably improve the word error rate;
that more can be gained by modeling phone durations
within words than by adjusting for local average speak-
ing rates; and conclude that local or global variations
in speaking rate are not major contributors to the ob-
served high error rates for SwitchBoard.

1. BACKGROUND

Conversational speech provides a particularly difficult
task for speech recognition. It provides much more
variability than either dictation, read speech, or iso-
lated commands. Our efforts to date decoding con-
versational speech, recorded over the telephone, in the
SwitchBoard corpus, have produced word recognition
error rates near 50 percent. In an effort to discover
the particular causes for this high error rate, we have
attempted to model the variations in the duration of
phones, and have analyzed their contributions to the
difficulty of the problem.

Several groups of researchers [6, 4, 2, 3] have used
phonetic duration models to improve the results of
speech recognition on other tasks, although they usu-
ally had one duration distribution per phone. Pitrelli
and Zue [5] have used decision trees to predict phonetic
durations, but they did not report recognition results.
We therefore sought to improve the performance by
using decision trees to model the phonetic duration for
the SwitchBoard conversational speech task.

2. CHARACTERIZATION OF
DURATIONS

The duration of phones in a Hidden Markov Model
(HMM) are modeled by the transition probabilities. In
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our standard system, we have a set of transition proba-
bilities for each phone. This means that we are tacitly
assuming that the phone durations are independent of
their context and independent of the speaking rate. It
seems reasonable to expect, therefore, that we might
improve the error rate by better modeling the effects
of context and speaking rate on the phone durations.

We would like, therefore, to estimate transition
probabilities that give duration distributions that ap-
proximate the actual duration distributions of the
phones. If we use the matrix of transition probabilities
that we get from training with the forward-backward
algorithm, we find that the distribution of durations
follows a log normal distribution. That is, the distrib-
ution of the logs of the durations follow a normal dis-
tribution.

Note that since our HMM topology requires a min-
imum length of 3, we can never fill in the tail of the
lognormal distribution for lengths 1 and 2. We can,
however, determine that the distribution is lognormal
by looking at the cumulative distribution for lengths 3
and greater.

If we use these HMMs to perform a Viterbi align-
ment to our data, we find that the distribution of actual
durations is also lognormal. It’s not clear whether this
is because we used Viterbi labels to measure the dura-
tions, or because we use Viterbi alignments to assign
vectors to classes when making prototypes, or because
the phone durations are really lognormal, but irrespec-
tive of the cause, it is clear that the HMMs can easily
model the shape of the distributions. It is particularly
fortunate that only two parameters are needed to define
each distribution.

3. CALCULATING CONTEXT
DEPENDENT TRANSITION
PROBABILITIES

The first step in creating the context dependent models
is to use decision trees [5, 1] to classify the log durations
based on the phonetic context, which includes five prior
phones and five following phones. Then with the means



and variances of the log duration distributions we can
generate HMMs for each leaf of the tree. The tree for
each phone had, on average, 20 nodes on 5 levels and
about 4 leaves.

Our HMMs have three states for each phone. Each
state has one forward arc and one self loop giving a
simple linear topology. We add skip arcs from the first
state to third state, and from the first state to the next
phone machine.

In order to calculate the transition probabilities, we
used simple heuristics derived from trial and error curve
fitting. A useful relation is that the exponential of the
mean of the normal distribution of the log duration
is also the exponential of the median of the normal
distribution, so that it is also equal to the median of
the lognormal distribution of the duration. It is also
convenient to make the following definition,

Definition: The “spread” of a log-
normal distribution is the exponen-
tial of the standard deviation of the
distribution of the logarithms of the
data points. We can characterize a
lognormal distribution with median
(times/divided by) spread.

We calculated the medians and spreads as a func-
tion of the Markov transition probabilities. Looking at
these, it was decided that loop probabilities less than
0.2 give distributions that are not very lognormal with
more than one forward arc. Also, we tried to get the
spread near 1.4 where possible, since this is near the
lower end of the range of experimentally determined
values for spread from the Viterbi alignments.

transition probabilities
loop forward skip skip
(n,n) (n,p+41) (1,3) (1,4)

median
duration
min max

1.0 115 Q 0 0 1-Q
1.15 A 0.2 0 Q-0.2 1-Q
A B 0.2 R 0.8-R 0
B 5.55  0.5-S 0.5 S 0
where A = 2.3431
B = 3.0814
Q = log{median) / log(A)
R = log(median/A} / 2*log(B/A)
S = 2.06/median - 0.37
Table 1.  Heuristics for calculating HMM transition

probabilities.
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For median durations greater than about 5.5 csec.,
the probabilities of durations 1 and 2 csec. are negligi-
ble, so we can forget about adding the skip arcs and use
the relation that the probabilites of the forward tran-
sitions are approximately inversely proportional to the
medians, to rescale the transition probabilities of the
original phone machines. For machines with median
durations between 5.5 and 2.3 csec., we add one skip
arc, and for machines with median durations less than
2.3 csec., we add both skip arcs. The heuristics used to
calculate the transition probabilities are shown above.

4. RESULTS OF DECODING

Using these new HMMs, we decoded 167 SwitchBoard
test sentences from the “credit card” topic. Using a
“cheating” language model (built on the test data), the
word error rate was 29.7 percent without the context
dependent models and 28.4 percent word error with the
duration models. This is a much smaller improvement
than expected.

In order to improve results, we used these new
HMMs to create Viterbi alignments; recalculated the
durations; and generated new decision trees and
HMMs. After four such iterations we tried decoding
and got 28.7 percent error.

We then tried training the resulting HMMs using
the forward-backward algorithm and got 28.0 percent
error. The overall improvement using context depen-
dent models, therefore, was only 1.7 percent.

Using a fair maximum entropy language model, the
overall error rate improved from 56.0 to 55.0 percent er- -
ror; and using a general language model that excluded
this topic, the error rate stayed at 56.2 percent word

error.
duration models
language model without with
“cheating” 29.7% 28.0 %
credit card maximum entropy 56.0 55.1
general, excluding topics 56.2 56.2

Table 2. Decoding results (word error rate) for 167

credit card test sentences

One possible explanation for the failure to see
marked improvements with duration modeling may be
because of insufficient weighting of the transition prob-
abilities.

We therefore tried adjusting the weights of the
HMM transition probabilities relative to the weight of
the HMM output probabilities and the weight of the



language model. To do this, we raised the output prob-
abilities to a power less than one and then normalized
to get total probability one. Then the overall HMM
score (log probability) for each sentence was multiplied
by a factor greater than one so that we, in effect, raise
the weight of the transition probabilities.

We have to do this indirectly, since raising the tran-
sition probabilities to a power greater than one and

then normalizing would change the length distribution
of the HMM.

Our standard processing uses the square root of the
output probabilities, so we tried using powers 0.3 and
0.2 to increase the weight. Using the general language
model on 40 sentences from the “credit card” topic, the
word error rate was reduced from 56 percent at power
0.5 to 54 percent at power 0.3, but then increased to
60 percent at power 0.2.

This increasing error with increasing weight (de-
creasing output transition power) was characterized by
the appearance of many deletions as the silence models
ate up frames to the ends of sentences. This is prob-
ably due to the unpredictability of silence durations,
to our fixed spreads on the duration of all phones in-
cluding silence, despite the greater actual spread for
silence, and to output probabilities for silence that are
smoothed due to training to noise frames and to quiet
speech frames at the ends of the silence periods.

5. ACCOUNTING FOR THE VARIANCE

These results could have several explanations. Perhaps
our decision trees account for very little of the contex-
tual variation or perhaps the variation of duration has
little effect on the error rate.

For convenience, let us make the following defini-
tion,

Definition: “pace” is the ratio of the
actual duration to the duration pre-
dicted by the decision tree.

For perfect prediction, the pace would be 1. If the
tree predicted 100 percent of the contextual effects, but
not the average speaking rate, then the pace would be
less than 1 for fast speech and greater than 1 for slow
speech.

We can calculate the pace for phones, words, sen-
tences, and so forth, by comparing actual durations to
sums of the predicted phone durations. When we look
at the distribution of pace values, we find that it also
follow a lognormal distribution.
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phones 1.59
words 1.47
sentences 1.175
speakers  1.084

Table 3. Spread of the pace, ignoring silence, for

the 167 sentence test set

Note that the variation across speakers and across
sentences is small compared to the variation across
words.

The fraction of the variance accounted for by the
context dependent durations can be determined by
comparing the variance of the log duration to the vari-
ance of the log pace for each phone. For most phones it
is 27+/-12 percent of the variance. Weighting the per-
centages by the frequency of occurrance of the phones,
excluding silence, gives 30 percent of the variance. This
is comparable to the results obtained by Pitrelli and
Zue [5], however they report their results as a per-
centage of the variation across all phones whereas we
are looking at individual phones. Some of the variance
was already accounted for by using independent phone
models. '

Looking at the most common words in the test set,
we find that over 50 percent of the variance of the du-
ration for the words “not” and “get” are accounted for
by the tree. Others, such as “I” and “Uh” have 10
percent or less accounted for.

not 58 the(02) 271 1 10
of(03) 58 them(01) 26 to(01) 9
get 56 and(03) 23 (silence) 5
don’t 41  use(02) 16 a(02) 2
just 41 know 15 Uh -5
I'm 40 of(04) 14 have(02) -6
they 32 that(01) 13 (silence) -7
you(02) 31 it(02) 12 my =35
and(02) 28
Table 4. Percent of variance accounted for by the

context dependent durations for all word
pronunciations with 20 or more occur-
rances in the test set.

6. PREDICTING THE PACE

If we look at the variance of (log(phone pace) - log(word
pace)) we can calculate how much of the variance could
be accounted for if we knew the actual word pace. We
find that 57 percent is accounted for, meaning 30 per-
cent from the context tree and 27 percent from the
word pace. The 43 percent left over within the words



can be due to syllable stress, speaker variations, ran-
dom processes, or to context effects that we miss.

The reality is that we cannot predict the word pace
exactly, therefore our estimate of the local speaking
rate must restrict us to accounting for less than the
57 percent expected in the ideal case. We already can
account for 30 percent, though.

If we estimate the current word’s pace by that of the
previous word ignoring silence, “Uh”, and “I”, our 30
percent gets reduced to -3 percent. We lost everyting
we had and more. This happens because the correlation
between the pace of the current and previous words is
only 0.13.

In fact, we find that the correlation between the
pace of the current phone and the pace of the previous
phone is only 0.15, so it is unlikely that any estimate
of the current word pace would be helpful.

7. CONCLUSIONS

We can conclude, therefore, that although the duration
models can account for about 30 percent of the variance
in the phone duration, they have little effect on reduc-
ing the word error rate. This has two implications:
first that the HMMs with standard weighting are not
adding to the error rate as a result of overconstraining
durations (as was seen for the silence models at higher
weight), and are therefore not responsible for the high
error rates seen with SwitchBoard; and second, that we
cannot use duration constraints to appreciably reduce
this high error rate.
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