FOUR-LEVEL TIED-STRUCTURE FOR EFFICIENT
REPRESENTATION OF ACOUSTIC MODELING

Satoshi TAKAHASHI

and  Shigeki SAGAYAMA

NTT Human Interface Laboratories
1-2356 Take, Yokosuka-shi, Kanagawa, 238 Japan

ABSTRACT

One of the problems with context-dependent HMMs is that
a large number of model parameters should be estimated
using a limited amount of training data. Parameters that
have the same property should be tied in order to represent
acoustic models efficiently. This paper proposes four-level
tied-structure for phoneme models. The four levels include
1) model level, 2) state level, 3) distribution level, and 4)
feature parameter level. Although some techniques have
been proposed for the first three levels, feature parameter
tying in the fourth level is newly proposed in this paper.
We found that feature parameter tying makes it possible to
represent 1,600 mean vectors of multivariate Gaussian
mixture HMMs by using the combination of 16
representative mean values in each dimension.
Experimental results show that feature parameter tying
reduces the amount of calculation required for recognition
without significant degrading performance. Furthermore,
we found that feature parameter tying is also effective for
model training.

1. INTRODUCTION

The HMM technique, which is a statistical method, trades
model complexity off against recognition robustmess.
Although model complexity can be increased by using a
large number of parameters, this makes it difficult to
estimate the parameters accurately. If the amount of
training data is not enough to estimate the parameters
properly, the recognition performance degrades dramatically
even if the test data is only slightly different from the
training data. Contrary, if the model has an insufficient
number of parameters to represent data properties, good
recognition performance can not be expected.

Overviewing the past progress in acoustic model
designing, the tied-structure has been one of important
issues as seen in allophone tying (e.g., generalized
triphone [21), state tying (e.g., HMnet [3]), and
distribution tying (e.g., tied-mixture [5] or semicontinuous
HMM [6]). To reduce the total number of model
parameters needed, the tied-structure is indispensable. The
main problem to be pursued by the tied-structure is how to
obtain a general model that represents data properties with
the least complexity. There are two advantages for
introducing the tied-structure. One is improved training
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efficiency since parameter tying reduces the total number
of parameters which increases the training samples per
parameter. By using the same amount of training data, the
tied-structure makes it possible to obtain a model with
better performance and higher robustness compared to non-
tied models. Another advantage is reduced calculation
amount needed for recognition through the reduction of the
total number of model parameters.

This paper proposes the four-level tied-structure for
the phoneme HMM. The model uses three-level tying
techniques which have already been proposed, and extends
the tied-structure to the feature parameter level as the
fourth level. In the feature parameter tying, mean values
(scalar quantity) are tied in each dimension of the mean
vector of the distribution. One can say that four levels
achieve tying of all constitutional elements of the HMM.
No existing models realize four-level tying
simultaneously.

2. FOUR-LEVEL TIED-STRUCTURE HMM

2. 1 Model level

This section describes four-level tied-structure from the top
level to the bottom. The top level is tying of the
allophone environments. The left and right contextual
environments having the same effect on the center
phoneme can share the same acoustic model. This has
been realized in most existing context-dependent HMMs.
We consider that the clustering of the contextual
environment [1], executed in the generalized-triphone
HMM [2] for example, as the method for finding the tied-
structure of the contextual environment.

2. 2 State level

The second level is state tying. The states having similar
feature distributions are tied across different models. State
tying enables us to generate context-dependent models with
a smaller number of HMM states. Basically, two strategies
have been proposed to obtain the tied-state structure: the
state splitting method [3] and the state merging method
[4]. The state splitting method starts from a single state
with a single distribution, and splits the state iteratively
according to the variance of the distribution in the state.
The state merging method first generates ali context-
dependent models that can be obtained from the training



data, and similar states are merged to reduce the
redundancy. Although those approaches are quite different,
both methods will finally generate a similar state network
that represents context-dependent models using different
state paths.

2. 3 Distribution level

In the third level, similar Gaussian mixtures (having
similar mean vectors and covariance matrices) are tied
across different states. This basic idea is well known as
the tied-mixture or the semicontinuous HMMs [5]-[7].
There are two major methods for tying the distributions.
One is that after all models are trained independently,
similar distributions are partially merged to make the tied-
structure among all distributions. The other is that a set
of distributions, which is commonly defined in all states,
is prepared beforehand (like a VQ codebook), distributions
related to each state are trained. In this paper, we take the
former approach. All distributions in all states are
clustered in order to find the tied-structure. The merged
distribution of a cluster is regarded as the representative
one, and the distributions in the cluster share this
distribution. Distribution tying enables us to cover the
feature space efficiently with a smaller number of
distributions.

2. 4 Feature parameter level

Although the three tying levels described so far have
already been proposed, feature parameter tying, the fourth
level, is newly developed as an extension of the tying
level. In feature parameter tying, the mean values are
merged into some representative mean values in each
dimension by using the clustering technique. The
clustered mean values are tied to represent the mean vectors
of the distributions.

First of all, we explain the possibility of tying mean
values. For simplicity, consider the two-dimensional
feature distributions whose mean vectors are p; and W2
indicated in Figure 1. The Euclidean distance between two
vectors is large since elements in dimension 1 (y,,; and
U2, 1) are far from each other. Thus, the two vectors can
not be merged in the third level. However, since elements
in dimension 2 (i1, 2 and L3, 2) are close, these can be tied
in the feature parameter level.

Generally speaking, context-dependent HMMs tend to
contain a large number of Gaussian distributions (e.g.
more than 1,000) and the same number of mean values
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Figure 1.

exist in each dimension. However, when the spectral
sensitivity of the feature parameter such as cepstrum is
considered, less than 100 points may be enough for each
dimension. Even if the mean values are merged into m
points in each dimension, there still is the potential to
represent mP vectors (p is an order), and mean vectors of
Gaussians will be represented by one of these vectors.

Next, consider the advantage from the view point of
calculation cost. The log likelihood for the kth mixture
component is calculated as follows when using the
diagonal covariance matrix,
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where x¢ = (X1, 1, Xt,2, -+ X1, p)T (p is the order) is an input
feature vector at time Z, Uk, ; and O, ; are the mean value
and variance for the kth mixture component, respectively.
‘When the mean values are tied across different models, the
calculation for the numerator in the third term,
(X, i— U, i)2, can be shared. The results are stored in a
table so as to avoid recomputation in different models,
thereby reducing the total calculation amount.

Furthermore, four-level tying is advantageous in
model training, for example in speaker adaptation where
the number of training samples available is limited. Even
when a part of models are trained and their mean vectors
are adapted, other mean vectors, whose elements are tied
with the trained means, will be also adapted.

3. PROCEDURE FOR GENERATING FOUR-
LEVEL TIED-STRUCTURE

A procedure for generating the four-level tied-structure
model is described below, and the flow is also shown in
Figure 2. Figure 3 schematically shows the hierarchical
tying structure of the model.

[Step-1] To construct first and second level tying
simultaneously, we adopt the Successive State Splitting
(SSS) method [3]. The SSS method generates a state
network by iterative splitting in the contextual domain and
the temporal domain to maximize the total likelihood.
The network generated using this algorithm is called
HMnet. Using a large amount of data from one speaker, a
600-state single Gaussian mixture HMnet was generated.
The HMnet generated in the following experiments
included about 1,700 triphone models.

[Step - 2] Four HMnets were cloned from the model
obtained in Step-1. These were trained independently
using the speech data from four different speakers. The
distributions of the corresponding states in the four
HMnets overlap, and a four-mixture HMnet was
obtained[8]. This model was used as an initial model of
the speaker-independent HMnet, and the data from 16
speakers were used to train the model.

[Step-3] A total of 2,400 distributions in all
states (4 mixtures x 600 states = 2,400) were clustered into
1,600 distributions to share the distributions. The

521



- 2-level model

Model and state One speaker  single mixture / state
level tying 600 distributions
- ~5
Gaussian mixture ty
) 2-level model pﬂ_
Speaker-independent |16 speakers 4 mixtures / state
training 2400 distributions
il
. ~ 3-level model ‘
Distribution 16 speakers 4 mixtures / state
level tying 1600 distributions
Cluster mean values
~ 4-level model
Feature parameter | 16 speakers 4 mixtures / state
level tying 1600 distributions

Figure 2. Generating the four-level tied-structure HMM
(600 states).

Kullback-divergence was used as a metric for clustering.
All distributions in cluster m were replaced by a merged
distribution with mean L., ; and variance o2, ; calculated as
follows in each dimension i,

umi=( Y, m)IK

ke cluster m
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..... 3

ke cluster m k€ cluster m
where summations are for the distributions that belong to
cluster m (K distributions in total). Each distribution tying
structure remains a state with 4 Gaussian mixtures.

[Step - 4] Finally, based on the three-level model
having 1,600 mean vectors, mean values were clustered
into n (= 256, 64, 16, and 4) in each dimension using the
scalar quantization technique, and the original mean vectors
were represented by using n representative mean values.
The Euclidean distance was used as a metric for clustering.
Note that the covariance matrix was not changed during the
experiments. The quantization method used in the third
and fourth levels was the k-means clustering method.

4. EXPERIMENTS

4. 1 Baseline conditions

Models with different tying levels were compared using the
26 Japanese phoneme recognition task, a speaker
adaptation task, and a word recognition task from the view
point of performance, training efficiency, and the amount
of calculation needed for recognition, respectively. The
database used in the following experiments contained
5240-important-Japanese-word sets and 216-phoneme-
balanced-word sets uttered by 20 speakers (10 males and 10
females). The even-numbered words in the 5240-word set
and the 216-word set of 16 speakers (45,376 words in
total) were used for training, and the odd-numbered words
in the 5240-word set of the other 4 speakers were used for
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Figure 3. Hierarchical tying structure of the model.

evaluation. The feature vector had 16 cepstrum
coefficients, 16 delta coefficients, and delta power.

4. 2 Results

Table 1 compares the phoneme recognition performance of
models with different levels. The context-independent
HMM consisting of 3 states with 16 mixtures, which
performed best in different mixtures, was also tested as a
reference. The performance of the two-level model was
3.2% better than that of the context-independent HMM.
Although the three-level model was slightly inferior to the
two-level model, the total number of parameters was
decreased by 33% (from 2,400 to 1,600). For the four-
level model, the number of mean clusters were varied from
256 to 4. It should be noted that the recognition
performance did not degrade even with 16 representative
mean values. The total number of parameters will be
further decreased, if the number of clusters is determined
depending on the parameter distribution of the cepstrum in
each dimension.

To check the training efficiency of the four-level tied-
structure model, the speaker adaptation task was performed

Table 1. 26 phoneme recognition rates.

Model Number of cecopnition rate]

States MixturegD: ions| Mean clusters %]

Tiepandent _126x3 16 | 1248 | 1248 | 84.4

2-level model 2400 | 2400 87.6

3-level model 1600 86.8

600} 4 256 86.9

4-level model 1600 o4 86.9

16 86.6

4 84.0
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Figure 4. Average phoneme recognition rate as a
function of number of adaptation words

using the two-level model with non-tied means (600
means) and the four-level model with tied means (16
means). The model of a male standard speaker was adapted
for a new speaker (ome-to-one speaker adaptation). A
speaker-dependent HMnet (600 states, single Gaussian)
was generated for the standard male speaker. The model
was adapted to four target speakers (two males and two
females) using maximum likelihood estimation. Figure 4
shows the average phoneme recognition performance as a
function of the number of adaptation words. Because each
representative mean was shared by many mean vectors
(600 means / 16 clusters = 38 tyings in average per
representative mean), when one mean moved, many
vectors were adapted simultaneously. This function
worked effectively for small numbers of adaptation words.
However, the performance saturates with more than 50
words due to the lack of parameter freedom. This curve
will be changed when some tied means are untied to
increase the parameter freedom, thereby closing to the
curve for the two-level model. One effective way to use
this property is that the tightly tied structure is used at the
beginning of the training, and the tied means are gradually
untied as the training proceeds.

The two-level model (containing 2,400 mean vectors)
and the four-level model (containing 1,600 mean vectors
represented by 16 means per dimension) were compared in
terms of word recognition accuracy and the computation
amount needed for recognition. The vocabulary size was
1,000 arbitrary selections from the odd-numbered 5240-
word set, and the 100-word test sets uttered by four testing
speakers were used. We counted the number of times the
numerator of the third term in Eq. (1) was calculated during
recognition. From the result listed in Table 2, we
confirmed that feature parameter tying significantly reduces
the computational requirements relating to mean values
drastically without a significant loss of accuracy. This
reduction is expected to be advantageous in applications on
business computers, although the computation time was
not reduced significantly on a workstation equipped with
highly sophisticated pipeline floating arithmetics.

Table 2. Average word recognition rates and ratio for
the occurrence of the calculation (xi, ;- L, ,')2 .

Occurrence of calculation | Word recognition
Model of (xri = Hai) rate [%]
2-level model
(2400 means) 1.0 94.0
4-level model
(16 mean clusters) 0.009 93.5

Note: the ratio takes account of only the
calculation (xi,i- t, i)’ during recognition.

5. CONCLUSION

The four-level tied-structure for phoneme HMMs was
presented to represent parameters efficiently. The four
levels are the model level, state level, distribution level,
and feature parameter level. Feature parameter tying (tied
means) is newly proposed. An exciting indication of the
new technique’s power is that it represented 1,600 mean
vectors of Gaussians by using 16 representative mean
values in each dimension, without degrading recognition
performance.

A speaker-adaptation experiment confirmed that the
four-level tied-structure increase training efficiency given
appropriate parameter freedom. We also confirmed that
feature parameter tying has the potential to reduce the
computation cost of the continuous Gaussian mixture
HMM although this is for just one part of the likelihood
calculation.
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