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ABSTRACT

The well-known Baum-Eagon inequality [1] provides
an effective iterative scheme for homogeneous
polynomials with positive coefficients over a domain of
probability values A. In [2] the Baum-Eagon inequality
was cxtended to rational functions over A and in [3,4]
a variant of this extended inequality was used for the
maximum mutual information training of a connected
digit recognizer.

However, in many applications (e.g. corrective training) -

we arc interested in maximizing an objective function
over a domain D that is different from A and may be
defined by non-linear constraints. In the paper we show
how to extend the basic inequality from [2] to (not
necessary rational) functions that are defined on general
manifolds. We describe an effective iterative scheme tnat
is based on this inequ.lity and its application to esti-
mation problems via minimum information discrimi-
nation.

. Introduction

Let us formulate a problem that we consider in the pa-
per as follows.

Problem: Let A be a domain of probability values:

t.

(i

) A =0, Y oxy=1 i=l.,r
j=1

Let DcA be a sub-manifold and / be a (single-valued)
function on D. We want to find a growing transforma-
tion 7:D — D, ie. such that {T(x)) = flx) for any
xeD.

QOur primary interest here is in problems that involve a
large number (n = several thousands) of variables (x;)
and thereforc optimization methods that require calcu-
lation of the Hessian matrix would be computationally
infeasible. For example, standard implementation of a
Newton’s method requires too much storage (O(rn?)) and
too much work per iteration (O(n?) flops).
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2. Main Results

In order to formulate our new inequality we need to
introduce the following definition:

Prajection: Let flx) be differcntiable at x = {x;} € D.
Iet C={C,..,C} be a sct of non-negative constants,

ofix) i
&(x) = S + Cxy and £6(x) = ¥ £f(x) # 0 for all
i =
i (we set £i(x) = &6(x) and &(x) = &f(x) if C=0).

Then a ‘projection” 7¢ = Tf at x is dcfined as follows:

. £5(x)
) Ty = —
T

where T¢(x); denotes the i — coordinate of the vector
T¢(x) .

The following theorem states that under very general
assumptions on a manifold > 7€ is a growing trans-
formation for a sufficiently large C.

Theorem [: 1et x e DcA be an inner point of D, ie.
there is an open ball U(x) = {y: |x — y| < ¢} (wherc |..|
denotes the Tucledean distance) such that U(x)cD. Let
/ be analytic at x (i.c. / can be represented locally by
power series ). Then therc exists C > 0 such that for all
C with C > G the following holds:  7%x)e D and

ATx)) = fix).

Proof: In order to prove the thecorem we need to ap-
proximate the function f{x) by polynomials for which
the statement of the theorcm holds. After this the gen-
eral statement is prescrved under limit transition. In
what follows we describe these steps in greater detail.
Step | (Uniform approximation). Let f{x) is represented
as a power scries J(x) in some neighborhood of x and
let a polynomial f,(x) consists of all terms of F{x) of
degree less than m. Then f,(x) converges uniformly in
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some neighborhood of x. Let A.(x)=fu(x) + Calx),

i

where Co(x)=— C, x( ¥ x;+ 1)" and C, equals
i=1y=1

a minimal negative coefficient in £, (or zero if there are
no negative terms). Let £, = A.(x) — D, where the con-
stant D, = Ca.(x) on D. Then all non-zero-degree coef-
ficients of f,(x) are nonnegative and f,(x) approximates
Sflx) uniformly in some neighborhood U of x. In other
words, for any & > 0 there existg an integer N such that
forall m>Nand ye U /) - fu(W)| < &

Step 2 (Inequality for polynomials): The inequality in
[1] is formulated for polynomials with nonnegative co-
efficients. But it is easily to see that zero-degree coeffi-
cients do not affect Baum-Eagon transformation
formulas. Therefore the following inequality holds:
SlTE(x)) = fu(x) for any C=0, where TS is the
projection (2) for fn(x). When C — oo T§(x) — x and
therefore there exists C, such that for all C>C,
T4(x) e U. In other words the theorem 1 holds for
polynomials f,(x).

Step 3 (Carrying over to limits): Since £{x)# 0 for
sufficiently large m and C the function T§(x) is defined
at x and T§(x) —» TF(x). This implics that there exists
C. such that for all C> C, T§(x)e U for sufficiently
large m. Carrying m to infinity and using inequalities
from Step 2 gives the full statement of Theorem 1.

In practical applications it is useful to have the following
equivalent of Theorem 1.

Theorem 2: Let conditions of Theorem | are fulfilled.
Let fi=1—a;, B(x);=Tx); (with C=0 in (2)) if
E(x)>0 and Bi=1+4+a;, Bx);=— T"(x); otherwise.
Let

3 x(o)y = B(x)y X oa; + x5 X B

" Then there exists ¢ such that for all 0 <« < ¢ the fol-
lowing holds: x(«) € D and fix(a)) = f[x).

The fact that these both theorems are equivalent is easily
follows from the following observation.

Lemma: In conditions of theorems 1,2 the following
holds:

$i(x)
S
In particular, o =1/C+o(1/C) f &{x)>0 and

a' =~ 1]/C+ o(1]C) otherwise. (Here Cx o(1)C) -0
when C — oo).

Tx) = T(x)y x &’ + x3 X (I — «’;) where a’; =

3. Comments

[. For sufficiently small « the following estimate of the
function growth holds:

@A)~ ) Ux) X o+ o)

i=1

where I{x) = ( —g% — &(x)), 2,- = i X

ofa)fa — 0 when a — 0.

ofix)

%, and

2. Using estimate (4) one can show that in above the-
orems flx(a)) > flx) if T%(x)# x and « #0. Also it is
easily to show that if 7°(x) = x then standard necessary
first-order maximum conditions with Langrange multi-
pliers at x are satisfied and therefore f{x) has a local
maximum at x if f{x) is concave in a neighborhood of
X.

3. One can show that theorems 1,2 remain true under
an weaker condition that f{x) has first-order derivatives
in some open neighborhood of x.

4. In the maximum likelihood training when an objec-
tive function f{x) is a polynomial with non-negative co-
efficients we have: flx()) > flx) forany 0 <« < 1.

5. Comments 1,2 imply the following statement. Let
D, = {a]|x(x) € D}. Let & is a sct of the ‘best’ step sizes
along 7(x), i.c.

(5 a={o) = arg max f{x(x))

Then flx(e)) > x if T%x) # x.
The problem (5) is easicr than the original problem since
it involves less number of paramcters than in (1).

6. In practical applications it is uscful to have transfor-
mation formulas for the following (slightly) more gen-
eral domain:
&
20, ) xy=a>0, i=1, ..
j=1

In this case the growth transformation like in (2) can be
defined as follows:

N T"(x)y=ax———
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4. Variations

In [3] Merialdo considered the problem of maximizing
a rational function (mutual information) over a domain
of probability values and suggested to separate positive
and negative terms ¢(x) and to form a new gradient as
the difference of projections of these positive and nega-
tive terms. In [4] Normadin et al. suggested to add a
large constant to the Merialdo gradient (in the spirit of
[2]). This work inspired the following straightforward
generalization of Theorem 2.

Modified projection: let flx) be differentiable at
x={x;}eD and let ((x)#0 for all i Let
S.() = {jl¢x) > 0} be a subset of indexes for which
¢{x) is positive and let S_(§) = {jl{(x) < 0} comple-

ments S.(5). Let &(x)= X €&fx). Similarly, let
i) = 3 &%) 7340
jes-®
Lletatr= Y xjandleta = Y x;.
JeS4 jeS.®
Let

®  THy=a" x &)l )

forie S,(i) , THx)y=0 for ieS.()
And let

@) Trxy=a x&x)é; (x)

forie S.()) , Ti(x);=0 for ie S.(i).
Then, finally, ‘modified projection’ is defined as follows:

9 7‘a(x)!./. = Tf*’(x),j X a?' — 7f(x),-j x a; Xy X /}!‘i

where a={af,07},i=1,..,r and fy=1-—0aF if
jeSi()and By=1+ a7 if je S.().

This projection defines a growing transformation for
sufficiently small «. The following statement follows
immediately from the comment 6 in Chapter 3.

Theorem 3: Let conditions of Theorem 1 are fulfilled.
Then there exists ¢ > 0 such that for all 0 < af, a7 < ¢

T.(x) e D and f{T,(x)) = f1x).

Remarks: Formulas (8),(8’) allow to introduce new pa-
rameters that control the optimization procedure and
therefore can be useful to adjust gradient to constraints
when x approaches the boundary of D. There exist also
modifications of (8),(8’) that allow to improve conver-
gence rate in an iterative optimization procedure (see
Numerical Experiments in Section 5).

5. Application to Minimum Information Discrimination

In this section we apply this theorem to the I-divergence
function: flx) = I(x|lq) = ix; log( %) (where
i=1 !

x,qe A, r=1,t=nin (1) and x # g), that plays an
important role in statistics (sce [5]). The formula (3)
gives rise to the following ‘decreasing” transformation:

Ifx|lg) — Cx;

(10) T(x),-= —aW+ﬁxi

where [(x]|q) = x: log( —x#:), and f =1+ «. (The minus
sign in the formula (10) appears since we are minimizing
f(x), and « and f are chosen in such a way that the sum
of thc components of the vector 7(x) in (3) equals 1).
This transformation has the property that for sufficiently
small a I(T()|q) < I(xllg) and T(x)e D if xe D is an
inner point.

Similar formulas can be produced using (8),(8').

Using the decreasing transformation (10) one can sug-
gest the following sub-optimal scheme for minimizing
the discrimination function f{x) = /(x||q) over a mani-
fold D = {x e Ay(x)>0,j= |, ..., m}, where f; arc lincar
or quadratic functions of n variables x;.

lterative scheme : 0) Start with some point xo e D,
t =0 and small ap; 1) x**! is computed by (10) (or (8),
(8") with a, chosen sufficiently small to satisfy linear and
quadratic inequalities fi(x'*')>0 (one can use 5. in
Comments for funding suboptimal «,); 2) f=¢+ 1, go
to 1).
Since [(x||q) is convex, onc can show that x' converges
to some point on the boundary of 1} if ¢ does not belong
to D.

Note that in general a domain D does not need to be
convex and therefore this iterative scheme can be espe-
cially useful when standard methods for minimization
over convex domains (c.g. [5]) are not applicable.

Remarks: Uscful models could be created by minimiz-
ing I(x}]lg) subject to thc following constraints:
xeA ,Y(x;— g) <z, where sumation is taken over
some subset of indexcs and ¢ are somc observed
frequences. For example, in the language model training
when ¢ represent unigram, bigram or trigram probabil-
itics, ¢ could be a set of frequences that were derived
from additional textual data (e.g. key words, topics etc.).
Note that when we are reaching a point on a bound
using the above training scheme (in other words we get
a point x satisfying the quadratic equation
3(x, — ¢:)* = ¢) one can continue the training procedure

3
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using some version of the formula (9) and choosing
weight coefficients « in such a way that the above
quadratic equality is fulfilled. We'll report elsewhere
about this kind of training.

Numerical experiments: We run experiments using for-

mulas (10) for different values of « to see how the de-
crease of Kullback Distance /(x|]g) could be controlled.
We set n=1,000,D=A and chose randomly ¢ and
starting points x in D. We also set in (10)
C = max {log(xi/q)} + ¢ (where £ was some fixed small
constant ) and varied « between 0 and 1. This choice of
C guarantees that T(x) in (10) belongs to A (for any
0 < «a < 1). The table 1. shows values of I(x'(«)||q) each
5 ierations (until the 20th iteration) for fixed « = 1 and
1/3 (for a typical example). The table shows that the
fastest decrease of I(x'(«)||q) was for the first 5 iterations
for o =1 and lower values of Kulback Distance were
achieved for « = 1/3 after t=15. For « =1 the valuc
of I(x'(«)l|lq) did not decrease gradually after the 6th it-
eration but rather circulated between 0.14 and 0.068
with each iteration. For « = 1/3 the value of I(x||q) de-
creased gradually until the 19th iteration. This exper-
iment suggests , as it was expected, that should start
optimize the [-divergence function using some values of
o near 1 and then gradually decrease « while approach-
ing a minimum point. In practical applications choice
of « would also be affected by additional imposed con-
straints.

In the other experiment (following remarks in Section
4) we studied transformations:

an T(x); = e x (Ty(x); — Ty(x))) + B x x;

L;
Here: Ta(x);= (xll4) if x;>¢q; and 0 otherwise;
il )L.(xllq)
Ll 1L TN o
Ti(x)i = e if x; < ¢; and 0 otherwise;
1(xllq) = . p )I,-(xllq) , [(xllq) = > }Ii(xllq) .
ixi> qi ix; < q;

In' other words, we separate terms in I(x||¢) in accord-
ance with the sign of log(x/|lg).

In the table 2. we gave values of /(x]|q) for the first 4
iterations using transformations (11) with « = 1/10.
After the 4th iteration the value of I(x%(«)||q) circulated
between 0.014 and .006 .

6. Summary

In the paper we generalized the Baum-Eagon inequality
to general functions on non-linear manifolds. Following

this general theory we calculated transformation for-
mulas for the I-divergence function. We produced nu-
merical data that demonstrate that these transformations
cffectively decrease I-divergence. We also provided nu-
mcrical evidence that separating positive and negative
terms in a gradient one can improve convergence rate
in an iterative optimization procedure.
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