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ABSTRACT
We describe a general formalism for training neural
predictive systems. We then introduce

discrimination at the frame level and show how it
relates to maximum mutual information training.
Last, we propose an approach for performing
discrimination in predictive systems at the sequence
level, it makes use of N-Best sequence selection.
Performances for acoustic-phonetic decoding reach
77.4% phone accuracy on 1988 version of TIMIT.

1. INTRODUCTION

Recently, several hybrid models combining Neural
Networks (NN) and dynamic programming
segmentation have been proposed in the hope of
improving continuous speech recognition systems.
These systems differ by the organisation of the
overall recognizer and the goal NN are used for:
probability estimation, signal production or pre-
processing of the data. Neural predictive systems
(NPS) for continuous speech recognition (CSR) are
one of these approaches [1,2,3]. Although early
performances of these systems were rather
disappointing, they have undergone recently
several improvements and offer now good
performances, while remaining easy to implement.
All the models which have been proposed in the
literature share the same basic scheme :

¢ predictive neural networks are used for low level
modelling of words or phonemes. For the latter,
one phonemic model, built from a small number of
predictors -or states-, is trained for each phoneme
to predict frame at time t from context frames.

e Speech signal is processed in parallel by all the
models, giving one score per frame and state
model. Sequences of matching scores between
models computed outputs and reference templates
are then processed through dynamic programming
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(DP) for segmentation. For training, the error
corresponding to the best path is back propagated
through the prediction models. This process is
iterated until convergence. For recognition, only
the forward pass of the above procedure is used.

These non-linear predictors make only local
stationary assumptions about data which may be
convenient for modelling speech [4], they allow to
take easily into account context and to incorporate
speech dynamic information.

We present in 2. a general formalism for training
Neural Predictive Systems (NPS). In 3 we describe
how to introduce discrimination at the frame level
and relate this to Maximum Mutual Information
training. In 4 we introduce phone level
discrimination through N-Best segment selection.

2. TRAINING NPS

Our NPS [3] makes use of three predictive multi-
layer perceptrons -or state models- for modelling
each phoneme. Speech is considered at each time
as being produced in one of these states and for
each phoneme state transitions are defined
according to a Bakis model. Emission probabilities
in each state are thus modelized as a non linear
auto-regressive process of fixed order driven by a
white noise whose parameters depend on the
current state :

Xt = Fp(x(ct) ,G)p)+ np ¢
where Fp is the function computed by the pth
predictor with parameters Op, npt is the prediction
error in state p at time t which is assumed to be an
independent and identically distributed (iid)
random variable with probability density function
P(np,t), and cg is the prediction context at time t. If

we assume that ny, ¢ is gaussian with zero mean, and
covariance matrix Xp, we can write:
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where d is the dimension of the input vector,
and &p(ct) = Fp(x(cy) ,@p). The likelihood of an

. T :
acoustic vector sequence (X;) along a particular

T
state sequence (s ) is computed as [5]:
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For training the NPS, one starts from an initial
value of the predictors parameters and perform an
iterative algorithm which alternates the following

two steps:
1. computation of model scores and
segmentation.

2. optimization of NN parameters.

LetL = -logP(Xrlr,srlr) and 6p be a parameter from

predictor p. Optimization is performed according
to a simple gradient algorithm:

aL
6p=0p - &5

The gradient can be decomposed as:
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where j indexes the outputs of the pth predictor.
Let t1...tpn be the time sequence corresponding to

the occurrences of state p, or equivalently predictor

@

T
p, in the sequence s . It follows :
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where o;j is the (k*)th element of Z'pl and d is the
input dimension.

The second term of the right hand side of (2) can
be computed through off line back propagation.

(3) thus allows to compute the gradient of L with
respect to any parameter 6 of a predictive network.

3. DISCRIMINATION AT THE FRAME
LEVEL

3.1. Implementations

We have proposed [6, 7] discriminative neural
predictive systems (DNPS) for acoustic-phonetic
decoding in CSR. Simple discriminative training at
the frame level [6] raised the performances of NPS
up to the state of the art (74.9% of phonetic
accuracy). This work and others proved the
feasibility of the predictive NN approach for CSR.
As an example, recognition results for each of the
phonetic classes are given in Table 1, for the neural
predictive system (NPS) and our best local
discriminant system (DNPS). Experiments have
been performed on 88 TIMIT database [8]. The
DNPS was more accurate than the NPS, with
improvements ranging from 3.6% for the glides to
11.6% for the nasals. The Improvements are more
significant for stops and fricatives. Most errors are
performed on vowels essentially due to their
duration.

phonetic classes % NPS % DNPS

Stops 56.2 67.8 + 11.6
Fricatives 63.1 74.6 + 11.5
Nasals 73.5 79.3 + 5.8
Vowels 48.1 57.2 + 9.1
Glides 79.4 83.0 + 3.6
Silences 95.9 96.1 + 0.2

Table 1. Performances (% correct) on phone
recognition for the six phone classes in the NPS
and the DNPS. A bigram phone-language model
has been used and insertions were not considered
as errors .

3.2. Probabilistic interpretation of frame
discriminative.training

In its simplest form, discrimination has been
implemented at the frame level by increasing the
output of the correct model while decreasing the
output of all other models. This simple
discriminative criterion can be derived as shown
below through the maximization of mutual
information evaluated over the sequence of correct
models. Let I be this mutual information:
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where x is a sequence of T speech frame vectors,
X1,...XT, Q the number of predictors, and pi, the

correct predictor for frame x;.

The priors P(p;) can be estimated as long-term
statistics from data, for simplicity, we will assume
that all states are equiprobable and that n ~ A{0,I).
Equation (1) then writes : :

. 12
P (x¢! plt) o exp (- 2 D 1[)
where D2; ¢ is the euclidean distance between desired

and computed outputs for the correct predictor at
time t, and (4) becomes :
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Training the system to maximize (5) over all frame
sequences obviously implements frame

discrimination or frame-MMI training.

However this form of discrimination is
computationally heavy. It has been found much
more efficient, both for training time and accuracy,
to perform discrimination between the correct
model and selected nearest competitors at each time
instead of all competitors [6].

4. DISCRIMINATION AT THE PHONE
LEVEL

4.1 A simple approach

Discrimination at the frame level is clearly not
optimal since it takes into account only local
information. Discrimination should be performed
at the sequence level, by considering competing
phoneme models which correspond to the most
likely paths for Viterbi scoring. This would allow to
concentrate on models which actually compete
during the decision process, which is not the case
with frame discrimination. In [7] we have presented
a simple strategy for doing this. During training, we
considered the two sequences of phonetic models
corresponding respectively to the real labelling of
the sentence and to the system decision.
Discrimination was performed only on models

which did not agree along the two sequences. This
simple technique did not led to significative
improvements while being much heavier
computationally than simple frame discrimination.

4.2. N-Best based discrimination

We have then implemented competition between
models corresponding to the N most likely paths
computed by an N-Best algorithm. This should
provide a better approximation of the classification
risk for sequences. We have implemented
different criteria and undertaken a series of
experiments for measuring the performances of
different N-Best algorithms for this paradigm.
Finally, we have used a simple version of the N-
Best method initially proposed in [9, 10]. This
implementation is computationally efficient for our
problem, it is briefly described below.

Algorithm

Let:

c(t,1,)) be the cost of moving from state i at time t-
1 to state j at time t.

Ck(t,5)=s(0)....s(t) be the kth best path from the
state sg=s(0) to state s=s(t) and Dy(t,s) its
accumulated cost.

Ph(C) the phone sequence associated to a
sequence C.

® the concatenation operator.

For a sentence with T acoustic frames, we obtained
the N-Best phone sequences as follows:

Initialisation :
0 :ifk=1lands=sy
Dk(0.)= infinity : otherwise
_ fsg (ifk=1ands=sy4
Ci(0.8)= empty : otherwise
Recursion over t=1,...,T:
Fork=1,.,N

Dy(t,s) = ]rcx’liq (D (t-1,8’) + c(t,s°,8)) such

.S
that Ph(Cy(t-1, s’) ® s) # Ph(Cy(t, s)) for
all m<k)

The minimum is thus taken over those state
sequences which are not yet in the list of the
(k-1) best phoneme sequences saved at the
level of node t.

Ckts) = Cye(t-1, s°’) @ s, where k’ and §’
minimize Dy(t,s).
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This algorithm ensures that Ph(C,(T,s)) #
Ph(C¢(T,s)). In our implementation we have forced
this difference to be larger than a given threshold.
In order to reduce computing time, memory
requirements and to prune unlikely paths, we have
used a beam-search strategy. Only the paths whose
cost remain in a given “beam” around that of the
best path are kept as candidates [11]. Those that
fall outside the beam are pruned. In the
experiments on TIMIT, we have considered only
two best paths (Figure 1). The models which
belong to the first path will be considered as correct
and trained so as to increase their accuracy, while
those which belong to the second path and not to
the first will be considered incorrect and updated so
as to increase their error. Sequence discrimination
slightly increases the performances compared to
frame discrimination (Table 1).
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Figure 1: The phonetic sequence of C] is different
from C2. Their differences are based on phonetic
model units and not on state models.

We have also incorporated into the model learned
transitions costs (P(sj Isj-1)). The system is trained
to learn intra-model state transitions by a simple
counting method. This also increased the
performances (Table 1) at a little extra cost.

system 2-Best] 2-Best with
transition
probabilities
Phone Substitutions(%) 14,2 13,4
Phone Insertions(%) 4,6 4.3
Phone Deletions (%) 5,2 4,9
Phone Correct(%) 81,6 81,7
Phone accuracy (%) 76,0 77.4

Table 1: Performances of our system with 2-Best
discrimination criterion and transition probabilities
on TIMIT database.

5. CONCLUSION

After describing a general formalism for training
neural predictive systems, we have presented several
implementations for discriminative training. Global
criteria measured on whole sequences allow to
reach state of the art performances. Local
discrimination is somewhat below but behaves
remarkably well at a low computational cost.
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