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ABSTRACT

Continuous density observation hidden Markov models
(CD-HMMs) have been shown to perform better than their
discrete counterparts. However, because the observation
distribution is usually represented with a mixture of multi-
variate normal densities, the training time for a CD-HMM
can be prohibitively long. This paper presents a new ap-
proach to speed-up the convergence of CD-HMM training
using a stochastic, incremental variant of the EM algorithm.
The algorithm randomly selects a subset of data from the
training set, updates the model using mazimum a posteri-
or{ estimation, and then iterates until convergence. Exper-
imental results show that the convergence of this approach
is nearly an order of magnitude faster than the standard
batch training algorithm. In addition, incremental learning
of the model parameters improved recognition performance
compared with the batch version.

1. INTRODUCTION

Continuous density observation hidden Markov models
(CD-HMMs) have been shown to perform better than their
discrete counterparts. However, because the observation
distribution is usually represented with a mixture of multi-
variate normal densities, the training time for a CD-HMM
can be prohibitively long. For example, convergence of stan-
dard forward-backward training for a tied-mixture obser-
vation HMM developed at LEMS takes several days using
multiple Sparcl0s [1]. The amount of computation can be
reduced by using Viterbi training instead of the full forward-
backward approach. However, this approach may cause
some degradation in recognition performance. This paper
reports on a recent effort to speed-up the training of a CD-
HMM without any loss of recognition performance.

Neal and Hinton have investigated variants of the
expectation-maximization (EM) algorithm [2]. They re-
ported a substantial speed-up in convergence for a mixture
estimation problem using an incremental EM algorithm
Fast convergence of an incremental generalized EM algo-
rithm was also noted by Jordan and Jacobs in their work on
hierarchical mixtures of experts [3]. The use of incremen-
tal training is common in gradient-based learning meth-
ods (e.g., back-propagation training of conmectionist sys-
tems {4]) and has recently been applied to gradient-based
training of HMMs [5]. It was hoped that speed improve-
ments could be obtained by applying a similar technique to
the training of CD-HMMs.
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This paper presents a stochastic, incremental variant of
the EM algorithm to estimate the parameters of a CD-
HMM. The algorithm randomly selects a subset of data
from the training set, updates the model parameters based
on the subset, and then iterates the process until conver-
gence of the parameters. The random subset selection is
done with replacement. This approach is stochastic because
the training data is randomly selected. It is considered in-
cremental because the HMM parameters are adjusted be-
fore all the training data has been considered. The training
strategy contrasts sharply to standard batch training where
the model is updated only after all the data in the train-
ing set are processed. Experimental results show that the
convergence of the incremental training algorithm is nearly
an order of magnitude faster than batch training. An addi-
tional feature — and rather unexpected to be honest — is
that the incremental training also improves the recognition
performance over the batch version.

2. INCREMENTAL MAP TRAINING

The learning technique presented here is a variation on the
recursive Bayes approach [6] for performing sequential es-
timation of model parameters given incremental data. Let
Zi1,...,Z7 be 1i.d. observations and 4 be a random vari-
able such that f(z.]8) is a likelihood on 8 given by z.. The
posterior distribution of 4 is

f(@lzy, ..., ze) ~ f(z:]0) f(Blz1, .. (1)

where f(8]z1) ~ f(z:1|0)f(8) and f(8) is the prior distri-
bution on the parameters. The recursive Bayes approach
results in a sequence of mazimum a posteriori (MAP) esti-
mates of 8,

1 Te—1)

2

6, = argmax f(6|z1,...,T¢).
P)

There is a corresponding sequence of posteriors
f(8)z1,...,z:) which act as the memory for previously ob-
served data. Note that if f(8) is a non-informative prior,
then (2) gives the maximum likelihood (ML) estimate of 4.
If the likelihood f(z:|6) is from the exponential family (i.e.,
a sufficient statistic of fixed dimension exists) and f(8) is
the conjugate prior, then the posterior f(8|z1,...,%:)is a
member of the same distribution as the prior regardless of
sample size ¢ [7]. This implies that the representation of
the posterior remains fixed as additional data is observed.
In the case of missing-data problems (e.g., hidden Markov
models), the EM algorithm can be used to provide an it-
erative solution for estimation of the MAP parameters [8].
The iterative EM MAP estimation process can be combined
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with the recursive Bayes approach. In addition, incorporat-
ing (1) and (2) with the incremental EM approach described
in [2] (i.e., randomly selecting data from the training set
and immediately applying the updated model) has led to
the following HMM training algorithm:

1. Initialization: Initialize the update counter ¢t = 1.
Choose a prior f(8) on the HMM parameters and ini-
tialize the HMM parameters by 8o = argmax, f(6).

2. Process data: Randomly choose a subset of utterances
z. from the training set. Given #;_;, run the forward-
backward algorithm over z: and compute the forward
and backward recursion terms. Update the posterior
distribution (equivalent to the expectation step of ac-
cumulating forward-backward terms) by

f(0|$1, ey Ig) ~ f(z,lﬂt_l)f(ﬂlzl, erey .’l:t_l). (3)

Determine the HMM parameters from the updated
posterior (the maximization step) by

0: = argmax f(0|z1,...,z:). (4)
6

3. If no convergence, set t — ¢t +1 and go to 2.

There are a number of points to note about the above
algorithm. First, the sequence of parameters 8; represents
the HMM parameters after the ¢** update and z. is the ob-
served acoustic data from a random subset of the training
utterances. In their work on MAP estimation of HMM pa-
rameters, Gauvain and Lee have presented the expressions
for computing the posterior distributions and MAP esti-
mates of CD-HMM parameters [9]. Because the posterior
is from the same family as the prior, (3) and (4) are equiv-
alent to the update expressions in [9] and are not repeated
here. As a final note, it should be pointed out that there
is no proof of convergence for this algorithm. However, the
following sections will show empirical results indicating that
it does converge to a useful solution.

3. EXPERIMENTS

3.1. Setup and Prior Parameter Generation

The experiments presented here were carried out on
a talker-independent, connected-alphadigit recognition
task [1]. The vocabulary consists of the American English
alphabet (A ~ Z) and the digits (0 ~ 9). No language
model was used. The training (testing) data set contains
3484 (595) utterances from 80 (20) talkers. The typical
utterance includes about 15 vocabulary items and has a
duration of five seconds.

Standard signal processing was used for the frontend, and
three sets of feature vectors were generated from LPC-based
mel-cepstral coefficients and energy. The initial param-
eters of the tied-mixture CD-HMM were derived from a
discrete observation hidden semi-Markov model (HSMM)
which used a Poisson distribution to model state duration.
This model was then converted to a tied-mixture HSMM
by simply replacing each discrete symbol with a multivari-
ate normal distribution. Normal means and full covariances
were estimated from the training data. Because of the ini-
tialization, the system achieved 87.0% correct before further
training.

The initial prior distributions were also derived from the
training data set. The employed prior distributions were
the normal-Wishart distribution for the parameters of the
normal distribution and the Dirichlet distribution for the
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Figure 1. Speed of convergence observed by (a) the log-
likelihood and (b) the recognition performance. ~For both
cases, the batch ML training and the incremental MAP train-
ing with a subset size of 20 utterances are compared.

rest of model parameters. The parameters describing the
priors were set such that the mode of the distribution cor-
responded to the initial CD-HMM [7]. The strength of the
prior (i.e., the amount of observed data required for the
posterior to significantly differ from the prior) was deter-
mined empirically. A subjective measure of prior strength
was used where a very weak prior was (almost) equivalent
to a non-informative prior and a very strong prior (almost)
corresponded to impulses at the initial parameter values.
In the following experiments, trainings were started from a
relatively weak prior, unless otherwise noted.

3.2. Speed of Convergence

In this experiment, speed of convergence for the incremen-
tal MAP training was compared with batch training using
the standard ML criterion. The incremental MAP train-
ing iterated the model estimation process from the subset
size of 20 randomly-selected utterances. Figure 1 shows (a)
the log-likelihood and (b) the recognition performance as a
function of the total number of utterances processed. Un-
-like the conventional EM algorithm that guarantees mono-
tonic likelihood improvement, the incremental MAP does
not achieve this nice property at each update. However, it
is still possible to observe the global trend of the likelihood
by computing the running average of the past values. Here,
the past 175 likelihoods (approximately equivalent to the
number of utterances processed by the batch training for
one iteration) were averaged.

According to the log-likelihood in Figure 1(a), conver-
gence of the batch training (dashed line) is not very ap-
parent. On the other hand, the incremental MAP train-
ing (solid line) converged when approximately 10,000 ut-
terances were processed. The recognition performance in
Figure 1(b) is more interesting. Performance of the batch
training reached 89.5% after 6 iterations (approximately
20,000 utterances). It remained at this level and then grad-
ually declined; probably due to overfitting to the training
data. The incremental algorithm stabilized after only 4,000
utterances — a factor of five faster than the batch algo-
rithm — to an even higher level of performance. Because
the overhead of the incremental MAP processing is negligi-
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Figure 2. Recognition performance for the incremental MAP
training as a function of (a) the subset size and (b) the ini-
tial prior strength. “+", "x", and “0" denote performances

achieved after 2060, 4000, and 10,000 utterances, respectively.

ble when compared with the batch training, the reduction
in the number of utterances required is directly reflected in
the training time. The fact that the algorithm converges
after 4,000 utterances (200 updates) is not surprising be-
cause prior/posterior terms in the MAP estimator become
stronger and stronger with each update. As training pro-
gresses, each subsequent update has less of an effect.

3.3. Improvement of Performance

In the second set of experiments, the recognition perfor-
mance of the incremental MAP training was tested as a
function of (a) the subset size and (b) the initial prior
strength. Figure 2(a) shows performance versus different
numbers of randomly-selected utterances (between 1 and
500) in the subsets. For each subset size, the performances
achieved after 2000, 4000, and 10,000 utterances are plot-
ted. Although not significant after 10,000 utterances, fur-
ther improvement (0.2 ~ 0.4%) is still possible. The best
performance (90.4%) was obtained when the subset size was
20 and 50. This represents more than an 8% reduction in
the error rate from the batch ML training method. Another
point to note is that the performance is relatively indepen-
dent of the subset size if it is small encugh (i.e., less than
50). However, the performance gets evidently worse as the
subset size grows beyond 100 utterances. .

In Figure 2(b), performance versus the different initial
prior strengths, from very weak to moderate, were exam-
ined for the fixed subset size of 20. As can be seen from the
figure, the choice of prior parameter strength does seem to
have an effect on the performance. Based on this, investiga-
tion into automatic procedures to determine prior strength
is under consideration. As a final note on prior strength,
this effect may not be significant as more utterances are
processed.

3.4. Processing Time

Table 1 shows the actual CPU time for the incremental
MAP trainings for the different subset sizes. A very slight
increase in processing time is observed as fewer utterances
were processed per subset. This is simply because the pa-
rameter estimation computation is insignificant compared
with the computation of normal mixtures for each utter-
ance. Thus, processing time is nearly proportional to the to-
tal number of utterances and independent of the subset size
(and, needless to say, independent of the prior strength).

459

1 2

(a)

5 10

20 | 50 | 100

200

7.8 | 74

(b)

72171

7170 7.0

7.0

Table 1. Processing time for the incremental MAP training
on Sparc10-51 workstation: {a) subset size and (b) processing

time per 1000 utterances (unit: hours).

subset || incremental | Incremental
size MAP (%) ML (%)
1 89.9 63.3
10 90.0 78.3
100 89.5 87.1
500 89.0 88.7

Table 2. Recognition performance achieved after 4000 utter-
ances: incremental MAP vs. incremental ML training.

4. VARIATIONS

In this section, several variations to the incremental MAP
training are examined.

4.1. Incremental MAP vs. Incremental ML

First, incremental MAP training is compared to incremen-
tal ML training’. The latter is identical to the former ex-
cept the ML criterion is used to estimate the parameters.
It should be noted that the conventional ML method can-
not simply be applied when the subset size is very small;
expectations of parameters will not be estimated well from
an insufficient amount of data.

Table 2 summerizes the recognition performances for the
incremental MAP and the incremental ML trainings after
4000 utterances. As described in Section 3 for the incre-
mental MAP approach, performance reached 89 ~ 90%
and higher performance is obtained when the subset size is
smaller than 50. For the incremental ML method, perfor-
mance gets worse with the smaller subset size. Furthermore,
performance even decreased from the initial level (87.0%)
when the subset size was less than 100.

4.2. Sequential vs. Randomized Data Sampling

So far the incremental MAP training approach has been
tested from the perspective that it works as a frequent up-
dating algorithm with a small amount of data in each sub-
set. Here, the effect of randomization in choosing the subset
data is examined. Figure 3 compares randomized and se-
quential sampling of utterances for the incremental MAP
training. For both cases, the subset size was fixed to 20. It
should be noted that training utterances were arranged in
such a way that those from female talkers (1328 utterances)
were followed by those from male talkers (2156 utterances).
This arrangement may be the cause of the exaggerated de-
fect for the sequential sampling case shown in Figure 3. The
reason for the performance going far below the randomized
sampling case in the early part of the training was prob-
ably due to the strong bias to female talkers. Eventually,
the sequential sampling almost caught up to the random-
ized sampling after the whole training set (3484 utterances)
was supplied.

If training utterances were arranged randomly enough,
the sequential sampling should have worked as well as the

!Incremental ML training was described in [2] and [3]. In our
experiment, however, incremental MAP training with the non-
informative prior was used instead of incremental ML, method,
since, as noted in Section 2, they are equivalent.
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Figure 3. Speed of convergence using the recognition per-
formance criterion. Utterances were sampled randomly and
sequentially: for both cases, the incremental MAP training
with subset size of 20 utterances was used.

randomized sampling. However, there is no clear picture
how the satisfactory randomness can be achieved. The ran-
domized sampling strategy has a good chance of avoiding
this problem no matter how the training database has been
prepared.

4.3. Refreshing the Prior during Training

This experiment is motivated by the observation that the in-
cremental MAP method is stabilized as the prior terms be-
come stronger after thousands of utterances are processed.
It is suspected that further improvement is prevented be-
cause the update from the data has less of an effect. It is
reported in [2] and [3] that, for some cases, “forgetting” older
values is quite useful for attaining better results. Although
very heuristic, the idea behind this is that the algorithm
improves further by reducing the the effect of the early ac-
cumulation which is possibly less accurate than the later
ones. The experiment is now under way and the results
will be reported at the next opportunity.

5. DISCUSSION

In this paper, a stochastic algorithm was studied using an
incremental MAP approach for training a CD-HMM. Con-
vergence of the training algorithm was found to be nearly an
order of magnitude faster than the standard batch training.
Also, the incremental training had the additional benefit of
improving recognition performance.

The incremental algorithm is more efficient because more
update steps are taken by frequently estimating the param-
eters. Consider a simple case; suppose a gradient-based
learning method is taken on a parameter space. If the gra-
dient is nearly flat in some area of the parameter space
(e.g., a plateau), it will take many steps to traverse the
space. Although the estimate of the gradient might be less
accurate than the batch training algorithm, the incremental
algorithm gets off the plateau faster using more steps per
data sample.

There are a number of hypothesized reasons for the im-
proved performance. A possible reason may be due to accu-
mulation of the posteriors for infrequently observed events.
This may provide a smoothing of the parameter estimates
which reduces the effect of overfitting. Furthermore, the
accumulation of likelihoods may be susceptible to preci-
sion errors. This becomes more evident as the amount of
training data increases. It is difficult to be avoided for the
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HMM parameter estimation problem where operations such
as rounding and/or adding a small number to a large value
are quite common, and many of computations need to be
done in the log-domain for speed.

It was found that existence of the prior (and, in conse-
quence, use of the MAP estimator) is an important factor
when the HMM parameters are estimated frequently from
a very small amount of data. Even a very weak prior works
far better than the zero prior case, or the incremental ML
method. Generally for a gradient method, the first few
steps are much larger than the later ones. Intuitively, the
“weak prior” lets the steps go in the right direction without
enforcing too much restriction. If it is too weak, the first
few steps might be very erroneous; if it is stronger than ap-
propriate, it would prevent the steps from being sufficiently
large. This idea empirically justifies the use of the MAP
estimator over the ML for the task described in this paper.

Finally, it was also found that the improvement of the
algorithm is highly dependent on the prior strength. The
choice of the prior is very difficult, to say the least, and
is mostly a task-dependent issue. However, it is expected
the efficiency (and probably improved performance as well)
of the incremental MAP approach will remain for a broad
spectrum of training scenarios.
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