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ABSTRACT

A novel approach to splitting Gaussian mixture components
based on the use of MMIE training is proposed. The idea
is to increase acoustic resolution only in those distributions
where discrimination problems are identified. Problem mix-
ture components are determined by looking at each mixture
weight counter; a large positive counter value indicates both
that the component often tends not to be recognized cor-
rectly (i.e., is not part of the best path when it should be)
and that there is sufficient training data to split the compo-
nent. Results in a connected digit recognition experiment
on the TIDIGITS corpus indicate that much better results
can be obtained with such MMIE trained digit models than
with MLE trained models that use several times more mix-
ture components.

1. INTRODUCTION

The use of mixtures of Gaussian densities in HMM out-
put distributions has become increasingly popular in the
past few years. In the framework of maximum likelihood
estimation (MLE) of HMM parameters, Gaussian mixture
distributions are often seen as the current best way of ap-
proximating, as closely as possible, the “true” underlying
distributions.

In practice, however, efficient use of Gaussian mixture
distributions is a delicate balancing act between two con-
flicting requirements. On the one hand, it is important that
good enough acoustic resolution be provided by the set of
Gaussian components (or kernels). In other words the num-
ber of such components should be large enough both to
provide adequate coverage of the relevant feature space and

~ to model the fine structure of the underlying distribution.
On the other hand, the number of such components should
be small enough to ensure that there are enough training
data to estimate both the mixture weights and the parame-
ters of the Gaussian densities (mean vector and covariance
matrix).

In most state-of-the-art systems, the way out of this
dilemma is through the concept of parameter sharing. Ex-
amples include “tied mixtures” HMMs [2], in which all out-
put distributions share the same sets of mixture compo-
nents, “phonetically-tied mixtures” [4] where the same set
of mixture components is shared by allophone models of
the same phone, “genonic HMMs” [3] where a clustering
procedure determines which output distributions will share
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the same sets of mixture components, or “fully continuous
HMMSs” [6] in which each output distribution uses different
sets of mixture components.

In this paper, we are specifically interested in fully con-
tinuous HMMs, which easily allow the number of mixture
components to be adjusted on a distribution by distribu-
tion basis. For example, a large amount of training data
for a distribution would allow a large number of mixture
components to be reliably estimated, thereby improving the
modeling accuracy for that distribution. This is in contrast
to using a fixed number of mixture components per out-
put distribution, as is often done in practice. Using this
principle, there are a number of ways in which the number
of mixture components per distribution can be determined.
For example, it can be determined a priori, based on the
amount of training data available for each distribution. It
can also be slowly increased until recognition results on a
validation test set start decreasing (which may be due to
insufficient training data for estimating the parameters of
each individual mixture component).

There is, however, something unsatisfactory about this
whole approach in that a large number of mixture com-
ponents may end up finely modeling the “interior region”
of underlying distributions. This doesn’t seem to be very
useful insofar as the goal is to improve discrimination be-
tween different classes (phonetic or otherwise) in the mod-
els. Moreover, it may result in a large number of relatively
useless mixture components in the models, whose param-
eters must nonetheless be properly estimated. This paper
proposes one possible solution to this problem based on
MMIE training.

2. INTERPRETING MMIE TRAINING

Let’s assume we have a set Y of N training utterances
(i.e., sequences of acoustic feature vectors) Y = {Ya,n =
1,..., N}, with corresponding transcriptions W = {W,,n =
1,...,N} (typically words or word sequences). The goal of
MMIE training is to maximize the following objective func-
tion [1, 5]:
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where Po(Yn|W') is the probability that an HMM-based
model corresponding to the word sequence W' produced Y5,
P(W') is a probability given by some stochastic language
model, and © is the set of all HMM parameters to be esti-
mated.

An interpretation of (1) is that MMIE training attempts
to maximize discrimination between the correct word se-
quence and any other competing hypothesis. We usually
represent these competing hypotheses using a model M,
defined as:

Po(YalMy) = ) Po(YalW')P(W'). (2)
Wl

That is, M, is a (typically looped) model containing a
path corresponding to every possible word sequence W’ in
the application, with language model probability P(W"').
The interest in defining such a model is that in practice,
MMIE training then becomes equivalent to doing, for each
training utterance Y,, a Baum-Welch pass using a model
built from the transcription W, which adds to the HMM
counts, and a Baum-Welch pass using M, which subtracts
from the counts.

To see this, let us define vu(n, t) as the a posteriori prob-
ability that yne, the t-th frame of the n-th training utter-
ance, was generated by b. Notice that vs(n,t) is typically
used in the Baum-Welch training procedure to reestimate
the parameters of b. For example, if b were a diagonal Gaus-
sian density, its mean would be reestimated as:
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Whether we use a gradient descent or a reestimation
formula to optimize (1), vs(n,t) will be required. For gra-
dient descent, the derivative 8log Po(W|Y)/38 (where 8 is
an HMM parameter) can be expressed as:
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where v3,4(n,t) is the equivalent of v4(n,t), but with
the model M, used instead of the model built from the
transcription (Mw, ). Similarly, reestimation formulas [5]
can be expressed as:
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where D is used to adjust the convergence rate (the
larger the value of D, the slower the convergence). It is in
fact possible to show that equations (5) and (6) are very
similar to a gradient descent, with the main difference that
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the step size is parameter dependent in that it is propor-
tional to o for fis and approximately proportional to o} for
&2. We used these reestimation formulas in all our experi-
ments.

3. MMIE-BASED SPLITTING OF MIXTURE
COMPONENTS

The reasoning behind MMIE-based splitting of mixture com-
ponents goes as follows. All paths in Mw,, the model built
from the transcription, will also exist in My. The difference,
however, is that in M, these paths will compete against
paths from all other possible word sequences. In order to
understand this better, we can consider the following two
extreme cases.

If Po(Ya|Wn) > Po(YalW), for W # W,, then M,
will be dominated by the paths corresponding to the correct
transcription W, with the result that vu(n,t) & 14(n,t)
will be true for all distributions. In other words, whether
we use gradient descent or reestimation, nearly the same
amount will be added to and subtracted from the same
counts, with negligible effect on the ultimate value of these
counts. If, on the other hand, Pe(Yn|W,) € Pe(Ya|W),
for some W # W, then some counts in the model for W,
will be incremented while other counts in other models will
be decremented. .

This is the basis of MMIE-based splitting of Gaussian
mixture components. If, after a MMIE training iteration,
the mixture weight count for a given mixture component
is large and positive, this means that the count was often
incremented using the correct transcription, but there were
many cases where a different path (i.e., not using this com-
ponent) was more probable in M. This clearly represents
a discrimination problem, which we have elected to solve
by splitting the mixture component, in order to improve
acoustic resolution in its vicinity.

The training algorithm can be summarized as follows:

1. For every training utterance, increment HMM counts
with the forward-backward algorithm using the cor-
rect transcription and decrement them using model
M,.

Find the mixture component with the largest positive
mixture weight count.

. Split all mixture components whose mixture weight
count is greater than a certain fraction of the maxi-
mum count found above (in our case we used 0.2). In
order to separate the resulting mixture components,
only one of them will be reestimated.

. Reestimate the mean and variance parameters of all
mixture components, as well as the mixture weights.

4. EXPERIMENTAL RESULTS

4.1. Connected digit corpus

Experiments were performed in the context of a connected
digit recognition experiment using the adult portion of the
TIDIGITS corpus, from the CD-ROM release. The corpus
vocabulary is made of the digits ‘1’ to ‘9’, plus ‘oh’ and
‘zero’, for a total of 11 words. Each speaker contributed to



the corpus with two repetitions of each digit in isolation and
55 digit strings, evenly distributed into lengths 2, 3, 4, 5 and
7. This makes a total of 77 digit strings, or 253 digits per
speaker. Each string is stored in a separate signal file, with
some silence (or background noise) preceding and following
the speech signal. The corpus contains 225 speakers (111
men, 114 women). Approximately half the speakers have
been assigned to the training set; the remaining half make
up the testing set.

4.2. Initial models

The system’s front-end computes a 39-feature parameter
vector every 10 ms. The speech features used are: 12 mel
scaled FFT based cepstral coeflicients, along with their first
and second derivatives, as well as the log-energy, along with
its first and second derivatives. Experiments were done with
word models with a left-right topology.

A set of gender-independent digit models using a single
Gaussian density per state was first trained with 4 iterations
of embedded MLE training (after proper bootstrapping on
the word segmentation). These will be used as initial mod-
els for both the standard MLE splitting procedure and the
proposed MMIE-based splitting procedure.

4.3. MLE trained mixture Gaussian models

Starting from the single Gaussian models, models with a
larger number of mixture components were trained using
a standard MLE-based splitting procedure. These models
will be used as comparison against the MMIE trained mod-
els. In the training procedure, the number of mixture com-
ponents per distribution is increased by splitting all compo-
nents whose mixture weight count is greater than 0.2 times
the largest count for the given distribution. Splitting is
done by shifting the original mean vector by £0.2 times the
standard deviation, while keeping the variance vector fixed,
followed by Baum-Welch reestimation. In practice, all com-
ponents were split, therefore resulting in models with 2, 4,
and 8 mixture components per distribution. The recog-
nition performance on the train and test sets is shown in
Table 1, where the number in brackets indicates the number
of components.

4.4. MMIE trained mixture Gaussian models

Again starting from the models with 1 component per dis-
tribution, several iterations of MMIE-split training, as de-
scribed above, were performed. Figure 1 shows the perfor-
mance on the train and test sets as a function of the iter-
ation number. After 10 iterations, the average number of
mixture components per distribution is under 2.5, but the
performance is much better than that of the MLE models
with 4, or even 8 components per distribution.

In order to compare the proposed approach with the
more standard approach of using MMIE training to opti-
mize MLE-trained mixture Gaussian models, we performed
two additional experiments. Starting with MLE models
with, respectively, 2 and 4 mixture components, 10 stan-
dard MMIE training iterations were performed to optimize
their performance. The result was that the performance ob-
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tained was still significantly worse than that of the models
trained with MMIE-based optimal splitting.

In fact, a revealing illustration of the technique’s ef-
fectiveness can be seen in Figure 2, which shows the con-
vergence of log Po(W|Y) for the three MMIE experiments
(optimal splitting, MMIE with 2 components, MMIE with
4 components).
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Figure 1: Error rate as a function of the MMIE training
iteration.

Figure 2: Value of the objective function log Po(W|Y) as
a function of the iteration number.

Table 2 shows the number of mixture components for
each HMM state after 10 iterations of MMIE-based split-
ting. It is interesting to see that the number of mixture
components per state is anything but uniform. Although it
is not easy to draw general conclusions from the way com-
ponents are distributed, it seems that models for problem
digits such as ‘oh’ ended up with many more components
than the others.

As a final comment, it is also important to realize that
not only is the number of components important, but so is
their location in feature space. In particular, discriminative
training techniques will tend to place the mixture compo-
nents on the border between confusable classes, rather than
inside the classes. In order to demonstrate this, we started
with the models obtained after 10 iterations of MMIE-based



splitting and we performed 3 MLE iterations. Figure 3
shows the recognition performance after each of these it-
erations. The effect is quite dramatic: any gain that was
obtained through the MMIE splitting/training procedure
is completely lost. As seen in Table 1, the performance is
somewhere between that of the MLE models with 2 and 4
mixture components, as if MMIE had never been used.

train set test set
W.Err | W.Corr | W.Err | W.Corr

MLE (1) 1.15 98.9 1.60 98.4
MLE (2) - - 1.44 98.6
MLE (4) - - 1.22 98.8
MLE (8) - - 1.00 99.0
MMIE (2) = - 1.14 99.0
MMIE (4) - - 0.98 99.2
MMIE-sphit (2.5) | 0.17 | 99.8 0.71 99.4
MLE (2.5) 1.03 99.0 1.31 98.7

Table 1: Summary of results.
model | number of mixture components per state
one 112223222221112111
two 221111111211121112
three | 322122233343734222
four 111111111211111121111
five 521111111211411111124
six 222344444644454344333123
seven | 121333333332333221233433431
eight 224121134434122
nine 111111112111111113
oh 277764557587785
zero 458333344344342223353332221
sil 31113
pau 2

Table 2: Number of mixture components for each HMM
state after 10 iterations of MMIE based splitting. For each
model, the number of mixture components per state is given
for each state of the model, listed from left to right. As can
be seen, the number of states per model is variable.

5. CONCLUSION

The proposed technique was shown to make very efficient
use of a small number of Gaussian mixture components, ob-
taining substantially better performance than MLE-trained
models with several times more mixture components. The
results obtained were very good, considering the fact that
none of the techniques that gave us our best results on this
task (gender-specific models, cross-word context-dependent
models, parameter weighting) were used in this study.
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Figure 3: Error rate as a function of the MLE training iter-
ation when starting from the 10-th iteration MMIE models
(iteration 0, in the figure).
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