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Abstract

This paper presents experimental results on the use
of noise compensation schemes with hidden Markov
model (HMM) speech recognition systems operating in
the presence of impulsive noise. A measure of signal to
impulsive noise ratio is introduced, and the effects of
varying the percentage of impulsive noise contamination,
and the power of impulsive noise, on speech recognition
are investigated. For the modelling of an impulsive noise
process, an amplitude-modulated binary sequence model
and a binary-state HMM are considered. For impulsive
noise compensation a front-end method and a noise-
adaptive method are evaluated. Experiments demonstrate
tha the noise compensation methods achieve a
substantial improvement in speech recognition accuracy
across a wide range of signal to impulsive noise ratios.

1- Introduction

Speech recognition systems operating in a practical
environment, may have to deal with a wide variety of
disturbances including impulsive-type noise. The sources
of impulsive noise can be electronic or acoustic and
include transmission errors, switching noise, adverse
channel environments, or click sounds from say a
computer keyboard.

The major signal processing stages in an HMM-based
speech recognition system are acoustic-feature extraction,
segmentation, and model likelihood calculation [1], Noise
affects each stage of the recognition process, and results
in increasing deterioration in recognition accuracy, as the
signal to noise ratio decreases. The effects of increasing
the rate of occurrence of impulsive noise, and/or the
power of impulses, on the recognition accuracy are
investigated.

Noise filtering methods that assume the noise is a
Gaussian, slowly time-varying, random process can not
deal effectively with impulsive noise, because impulsive
noise is a highly nonstationary and non Gaussian process.
For the statistical characterisation of an impulsive noise
process, an amplitude-modulated random binary sequence
and a 2-state HMM are considered.

For noisy speech recognition the aim is to reduce the
noise-induced discrepancy between the noisy signal
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parameters and those of the clean speech model. This may
be achieved in two ways by either removing the
impulsive noise from the noisy input signal or by
modification of the HMMs to include the effects of the
noise [2-6]. In this paper a front-end impulsive noise
removal filter, and a noise adaptive model are evaluated
and compared.
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igure(1) - An impulsive noise model as the output of a filter
excited by an amplitude-modulated binary sequence.

2- Impulsive Noise Models

An impulsive noise sequence nm) can be modelled as an
amplitude-modulated, binary-state, random sequence and
expressed as

n,(m) = n(m) b(m) 4))

where b(m) is a binary-valued random sequence of one's and
zero's that signals the presence or the absence of a noise
pulse, and n(m) is a random noise process. Two statistical
processes for the modelling of an amplitude-modulated
binary sequence are the Bernoulli-Gaussian process and the
Poisson-Gaussian process. The autocorrelation function of
an uncorrelated impulsive noise process is also a binary-
state process modelled as

Tom (kom) = 02 8(k,1~b(m)) 1))

where 6(i,j) is the Kronecker delta function. For an
uncorrelated noise process the power spectrum of the
impulsive noise model of eq(2) is

P, (f.m) = o, 8(1-b(m)) 3)
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Assuming that the amplitude of a noise pulse is a zero
mean Gaussian process with variance 0'3 , (0, o‘f ), the
pdf of an impulsive noise process may be defined as

fu,(n) = (1-0)d(n) + aN(0,02) @

where « is the probability of occurrence of an impulse.

In a communication system, an impulisive noise originates
at some point in time and space and propagates through the
channel to the receiver. At the channel output, the
impulsive noise is shaped by the characteristics of the
channel, and may be considered as the channel impulse
response. The duration of an impulsive noise depends on
the source of the noise and the channel response and may
vary from a few microseconds to a few tens of
milliseconds. A real impulsive-type noise sequence, nj(m),
can be modelled, figure(1), as the output of a channel filter
excited by an amplitude-modulated random binary sequence
as

P-1
n,(m) = D h(k)n(m —k)b(m—k) ©)
k=0

where h(m) is the impulse response of a filter that models
the duration and the shape of each impulse.

An alternative model for an impulsive noise sequence is
the two-state HMM shown in figure(2). In this binary
model, the state Sg corresponds to the ‘off ' condition when
impulsive noise is absent. In this state the model 'emits'
zero-valued samples. The state §; corresponds to the ‘on '
condition. In this state the model emits short duration
pulses of random amplitude and duration. The probability
of transition from state §;to state §jis denoted by a;j
The impulsive noise state S; can be configured to
accommodate a variety of noise pulses of different shapes,
duration and pdf, using a codebook of M prototypes of
impulsive noise, and their associated pdfs.

a=l-a

Figure(2)- A binary-state HMM of impulsive noise. With the
values of the transition probabilities as shown, the likelihood
of occurrence an impulsive noise is independent of the state.

3- Signal to Impulsive Noise Ratio

Let Prmpuise denote the average power of each impulse,
and Pgigng the signal power. A ‘local' time-varying

signal to impulsive noise ratio can be defined as

P (M)

©)
Prpuies 5L — b(m))

SINR(m) =

For impulsive noise, the average signal to impulsive noise
ratio (averaged over a long noise sequence and including the
instances when the impulses are absent), depends on two
parameters: (a) the average power of each impulsive noise,
and (b) the rate of occurrence of impulsive noise. An
average signal to impulsive noise ratio, assuming that ¢ is
the fraction of signal samples contaminated by impulsive
noise, can be defined as

P.
SINR = —Signal )

O . P

Note that for a given signal power, many different values
of  and Pgigng can yield the same average SINR.

4- Impulsive Noise Detection

In this section we consider a front-end method and a model-
based method for the detection of an impulsive noise
sequence.

4.1- Pulse Detection using Inverse Predictor

An impulsive-type noise introduces uncharacteristic
discontinuity in a correlated signal. The detectability of a
noise pulse, observed in a high level of correlated signal,
can be improved by a decorrelation (spectral whitening)
operation, which has the effect of enhancing the amplitude
of an impulsive type event relative to the "background"
signal. The correlation structure of the signal x(m) may be
modelled by a linear predictor, and the noisy signal y(m)
can be described as

p
y(m) =Y ax(m—k)+e(m) + 8(b(m) - )n(m)
k=1
- ®
where ay is the k™ linear predictor coefficient, and e(m) is
the speech excitation. The process of de-correlation is
performed by an inverse predictor filter[3]. Inverse linear
prediction is a differencing operation, it makes the
discontinuities in a correlated signal more detectable. An
alternative interpretation is that the inverse filtering is
equivalent to a spectral whitening operation ; it effects the
energy of the coloured signal spectrum whereas the,
theoretically flat, spectrum of the impulsive noise is
largely unaffected.

4.2- Noise Detection Based on the ML State
Sequence

The maximum likelihood (ML) state sequence of a hidden

Markov model of impulsive noise, figure(2), can be used
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as a detector of the presence or the absence of impulsive
noise. For a given observation sequence y= [y(0), y(1), ...,
y(N-1)], the maximum likelihood state sequence s= [s(0),
s(1), ..., S(N-1)], of an HMM A is obtained as

Sy = drgmax Frsa(ls,A) ®

where fyis, A(ls,A) is the pdf of the observation sequence
y along state sequence s of model A. The ML state
sequence is derived using the Viterbi algorithm.

A problem in using HMMs for the detection of impulsive
noise is the sensitivity of the accuracy of the ML state
sequence to the presence of a background signal. A
solution is to decorrelate the speech using an inverse
linear predictor, and to train the HMMs on impulsive noise
observed in a decorrelated, white, background signal. An
alternative solution is to use HMMs that combine the
speech and the impulsive noise states [5,6].

5- Front-End Impulsive Noise Removal

A typical impulsive noise sequence leaves a large fraction
of speech samples unaffected. Thus it is advantageous to
locate the individual noise pulses, and correct only those
samples which are distorted. The front-end impulsive noise
removal system evaluated in this paper is composed of a
detector and an interpolator as shown in figure(3), [3,4].
The detector locates the position of the individual impulses
and the interpolator replaces the distorted samples using
speech samples on both sides of the impulsive noise. The
output of the detector is a binary switch which controls the
interpolator. A detector output of ‘9’ signals the absence of
impulsive noise and the interpolator is bypassed, a detector
output of ‘I’ signals the presence of impulsive noise and
the interpolator is activated to replace the samples
obliterated by noise.

Signal + impulsive noise Signal
o Interpolator
Linear
b—a{  Prediction 1: Impulse present
Analysis ) .
0 : noiseless signal
Predictor coefficients

. = ,

sl Inverse Filter Matched Filter Threshold
Detector
Noisy |Excitation Signal Power
Estimate
EE——
Detector subsystem Robust power estimator
J

Figure(3)- An impulsive noise removal system incorporating a
detection and an interpolation subsystems.

Speech samples distorted by impulsive noise are discarded
and replaced using a least mean squared error interpolator

[3]. The interpolator is based on a linear prediction model
of speech, and makes effective use of the undistorted
samples on both sides of the discarded speech samples. The
interpolator works well for the replacement of missing
speech segments of upto 50 samples at a 10 kHz sampling
rate.

6- Speech and Noise Model Combination

An alternative method to the filtering of noisy speech
signal is to modify the speech models to include the
statistical effects of the noise on the speech parameters. In
parallel model combination an HMM of a speech signal is
combined with an HMM of noise to produce an HMM for
the noisy speech observation signal. For each state of the
clean speech HMM there are two states in the combined
model, corresponding to whether impulsive noise is
present or absent [5,6].

7- Experimental Results

The noise compensation techniques were evaluated
using the NOISEX spoken digit database, with machine
gun noise and simulated short duration impulsive noise.
The digits were modelled using an 8 state, single mode
per mixture HMM, with a diagonal covariance matrix. To
generate features, the speech was Hamming windowed
every 16ms with a window width of 32ms. Each signal
window was transformed into a feature vector of 25 mel-
spaced filterbank channels. This was then converted to 14-
dimensional MFCC features.

Effects of Impulsive Noise on Speech
Recognition- Experimental results on the effects of
varying the frequency of occurrence and the amplitude of
impulsive noise on the performance of HMM-based speech
recognition systems are tabulated in table-1, which shows
the recognition performance for speech contaminated by
simulated impulsive noise. In this experiment both the
percentage of speech samples contaminated by impulsive
noise, and the overall signal to impulsive noise ratio
(SINR), have been varied.

100 | 100 | 96 | 88

5 100 | 93 68 32 ] 2
10 100 | 90 51 26 | 17
20 || 100 90 44 23 | 13

Table(1) - Recognition performance for speech contaminated
by impulsive noise.

Table-1 shows that as more speech samples are
contaminated by impulsive noise, or as the impulsive
noise power increases, the performance of the recogniser
deteriorates. Note that, for a given signal to impulsive
noise ratio, increasing the percentage of samples corrupted
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by impulsive noise means that the average impulse
amplitude is decreased. From the columns of table-1, at a
given SNR, as the frequency of occurrence of impulses
increase the recognition performance deteriorates. As
expected, a few large impulses have a lesser degrading
effect than a large number of small amplitude impulses .

Matched and Un-matched Conditions
Un-matched conditions form the worst case, due to the
mismatch between the models trained on clean speech and
tested on noisy speech. With matched conditions the
models are trained and tested with speech contaminated
under similar noise conditions, which should indicate the
best performance the system can achieve.

Impulsive Noise Compensation
Figure(4) shows the performance of speech recognition in
the presence of a machine gun noise. Machine gun noise
can be considered as the impulse response of the machine
gun and the acoustic environment. As such they have a
relatively long and well defined shape. The method of
parallel model combination works well for the longer
duration impulses with a relatively high amplitude, with
performance approaching that of the matched conditions.
Figure(5) shows that for shorter duration impulses the
front-end combination of noise detection and interpolation
improves the performance considerably at a signal to noise
ratio as low as 0 dB.
8- Conclusion
A number of nonstationary stochastic processes for the
modelling of an impulsive noise sequence have been
~ considered. For speech recognition in impulsive noise, a
front-end method and the model combination method are
evaluated. The model combination method achieves good
performance for longer duration noise pulses such as a
machine gun noise. Experimental results indicate that the
front-end noise removal method is more effective in
compensating for short duration impulses. This may be
due to the utilisation of the distinct and localised character
of an impulsive noise in the time domain by the front-end
system. Whereas, the model combination method, using
the same frequency-based features as that of the speech
model, compensates for the effects of the noise in the

frequency spectrum.
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Figure(4) - Recognition performance for machine gun noise.
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