NOISE COMPENSATION FOR SPEECH RECOGNITION IN
CAR NOISE ENVIRONMENTS

Ruikang Yang and Petri Haavisto

Nokia Research Center
Tampere, SF-33720, Finland

email: ry@rpeltp.research.nokia.com

ABSTRACT

In this paper, a noise compensation algorithm for
HMM based speech recognition systems, which uti-
lizes the parallel model combination concept[6], is
presented. The algorithm was tested using the

TIDIGITS database with artificially added car noise.

Very promising results were obtained. The results
show that at -10 dB SNR the recognition accuracy
could be improved from 34% to 89%. The noise
compensation algorithm was also tested using a
database which was recorded in a car. Improved
performance was obtained, but the improvement
was clearly smaller than with the artificially added
noise.

1. INTRODUCTION

An important problem in speech recognition is the
ability of the recognition algorithm to achieve re-
liable performance in noisy environments. One
application is the hands-free mobile phone in a
car where the user can access telephone functions
through voice. It has been shown that the perfor-
mance of speech recognition systems dramatically
decreases when they are trained and used in differ-
ent environments [1]. There have been many stud-
ies for achieving reliable performance under noise
environments [2]-[7]. One of the major approaches
is to modify the pattern matching stage to take the
effects of noise into account. Parallel model combi-
nation (PMC) is one of such schemes which trans-
forms a set of HMM word models trained with
clean speech into a set of models which can be
used under the noise conditions of interest [6].

Gales and Young applied PMC to the NOISEX-

92 database where speech and noise were artifi-
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cially added at different SNR levels, and they ob-
tained quite good results. However, only a single
Gaussian mixture was assumed in the noise model
and the test was speaker-dependent. Since multi-
ple Gaussian mixtures are widely used to achieve
better performance, it is useful to study the noise
compensation algorithm with multiple Gaussian
mixtures. It would also be interesting to see how
PMC performs in speaker-independent recognition.

In this paper, we study a noise compensation
algorithm for speech and noise models having mul-
tiple Gaussian mixtures. It is shown that the com-
pensated models will have M, x M,, Gaussian mix-
tures, where M, and M,, are the numbers of mix-
tures for clean speech and noise, respectively. The
algorithm was applied to digit recognition in a car
noise environments. The TIDIGITS database was
used in the experiment. Car noise was added to
the clean digits at different SNRs, and the com-
pensated HMMs were used to recognize the noisy
digits. Very good results were observed. For in-
stance, the results show that at -10 dB SNR, the
recognition accuracy was improved from 34% to
89%. The algorithm is also applied to a car speech
database recorded in a parked car with the motor
off, while driving downtown, and while driving on
a highway. The database consists of over 100 male
and female speakers.

2. PROPOSED ALGORITHM

In the noise compensation algorithm, it is assumed
that the speech and noise are additive in the lin-
ear power domain, and the noise is stationary.
Thus a single state noise model is sufficient. Mel-
frequency cepstral coefficients are used in the recog-
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nition system. The front-end is shown in Fig.1.
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Figure 1: Front-end of the recognition system

Let O¢, O' and O represent the observation
vectors in the cepstral, log, and linear domain, re-
spectively. Suppose in the cepstral domain the
signal can be modeled by a set of Gaussian mix-
tures, i.e., the density function has the following
form,

M
FO%) = Y DuN(O% 4, Usm). (1)
m=1
where N (0°, u°,.,U%,) denotes the Gaussian dis-
tribution, with u¢,, and U¢, as its mean vector
and covariance matrix for the m-th mixture. D,,
is the scaling coefficient for the m-th mixture.
The mapping from the cepstral domain to the
log domain is a linear transform. This inverse dis-
crete cosine transform is represented by a matrix
C-lin
o' =c-lo-.
Then the distribution in the log domain is still a
set of Gaussian mixtures, i.e.,

fi(o") = f: DuN(O' o, Ulm),  (2)

m=1

with

3)

Ul_m = C—lUcm(C—l)T_
When transforming O' to Of in the linear do-
main, it can be shown that the density function in

the linear domain is a set of log normal mixtures,
ie.,

M
fI(OI) = Z Dm‘c(olaﬂ'lma Ulm)' (4)
m=1

where £(Of, 1., U',.) denotes the log normal dis-
tribution with u!_, and UZ,, as mean vector and

covariance matrix of each mixture. They have the
following relationship with the mean vectors and
covariance matrices of Gaussian mixtures in the
log domain:
{ogrs
wl (i) = exp(l (i) + F50)
Uln(i,3) = pln(Dul n(5)(exp(Ulm (3, 7)) - 1)(, )
5

where the indices in the parentheses refer to the
vector and matrix elements.

The above mapping process suggests that if
the signal can be modeled by a set of Gaussian
mixtures in the cepstral domain, then in the linear
domain its distribution is a mixture of log normal
distributions.

Let f,f and f,! denote the density functions
for the clean speech and the noise in the linear
domain,

Ms
100 =3 DnL(0f, 4! o, Ulem).  (6)

m=1

Mn
nt(OI) = Z E‘m‘C(OIhu‘Inm7 UInm)' (7)

m=1

According to the assumption that in the linear
domain the speech and noise are additive and in-
dependent, the distribution for noisy speech will
be the convolution of £,7(07) and f£,7(07), i.e.,

M, M,
L0 = Y ST DiEL(O p 1, Ul em)

i=1j=1

*‘C(OI7 ,u’Ism.7 UIS'm)y

(8)
where * stands for the convolution operation. If
the convolution of two log normal functions is as-
sumed to be approximately log normal, as is as-
sumed in the single mixture PMC [6], then the
distribution for noisy speech in the linear domain
is a set of log normal mixtures. The number of
mixtures for noisy speech is N = M, x M,, and
the density is

N
0.1 =Y Hol(OF, pl s Ulam),  (9)

m=1
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where
H, = D;E;

plom =gulg+ul,; . (10)

UI.z:m = ZUIsi + UInj
where g is a gain matching term [6] and

i=1,---,M,, and j=1,---, M,

and m=(i—1)M;+j.

Therefore, the noise compensation process is
straightforward. Given the HMMs for clean speech
and noise in the cepstral domain, their model pa-
rameters in the linear domain can be calculated
using Eq.(3) and Eq.(5). Then compensation of
the clean speech model by the noise model in the
linear domain according to Eq.(10) is performed
to get the model for noisy speech. The model pa-
rameters in the cepstral domain can be calculated
by inversing Eq.(3) and Eq.(5).

3. EXPERIMENT RESULTS

In order to evaluate the performance of the al-
gorithm, we applied it to two databases. The
first database is TIDIGITS with car noise artifi-
cially added. The second is a car speech database
recorded in real car environments. In the exper-
iments, only single digits were used, though the
compensation algorithm is generally applicable for
connected digit recognition.

As shown in Fig.2, the models of the clean
speech are first obtained by training them with the
single digits in the database. Each digit model had
10 states, and a single-state model was used for
noise. The recognition system updates the com-
posite models by modifying the clean speech mod-
els according to the noise model, and the compos-
ite models are used to recognize the noisy speech.

In the first experiment, car noise with differ-
ent SNRs was added to the single digits in TIDIG-
ITS. The clean digit models were trained with the
training set of the database. For different SNRs
the noise model was obtained by training with the
non-speech segments of the noisy digits. Fig. 3
shows the recognition results with and without
noise compensation. It also shows the HMMs with
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Figure 2: Model updating according to the input
noise

5 Gaussian mixtures achieve better performance in
both cases. '

In the earlier paper [6], only mean vectors were
updated for each digit model. In order to see the
difference it makes by updating state variances we
have two options in our experiment, i.e. updat-
ing the mixture means only, or updating both the
means and the variances. Table 1 shows the results
for the two options. It is observed that updating
both mean and variance improves the recognition

performance.

It is interesting to note that the noise com-
pensation algorithm is very effective in achieving
noise robustness. For instance, it can increase the
recognition accuracy from 34% to 89% under -10
dB SNR.
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Table 1: Test results by updating the mean only

and updating both the mean and variance

without compensation with compensation

SNRs (dB) mean | mean & var.
+10 92.3 95.1 95.8
0 76.1 92.5 94.4
-5 56.4 88.6 92.5
-10 33.8 77.0 89.0
-15 17.5 49.9 84.6

In the second experiment, we applied the algo-
rithm to a car speech database. The database was
recorded under different car environments: park-
ing place, downtown, and highway. The clean

speech models were trained with the digits recorded

when the car was parked. The noise model was
trained with the noise segments where no speech
was present. The test results are shown in Table
2. It is observed that improved performance was
obtained with PMC. However, the improvement
is not as much as that for the first experiment.
This can be explained by the fact that the speech
and noise are not independent as are assumed in
PMC. Therefore, other measures may have to be
employed to improve the performance further.

In the noise compensation algorithm, only static

cepstral coefficient compensation was used here.
As is well known, delta and delta-delta cepstral
coefficients can be used to improve the recognition
performance. Therefore, it is necessary to extend
PMC with delta and delta-delta coefficient com-
pensation. Gales and Young proposed a method to
compensate the delta cepstral coefficients[7]. How-
ever, their method applies only for a special case
and is not valid for the general cases where delta
cepstral coefficients are calculated by using longer
linear regression. Thus there is still room to en-
hance the noise compensation scheme.

Table 2: Test results for the car database

No.of Parking | Highway Highway
mixtures place with PMC
1 96.8 45.5 64.9
3 98.0 46.0 65.8
5 98.9 46.5 66.1
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4. CONCLUSIONS

We have proposed a noise compensation algorithm
to enhance the robustness of speech recognition
systems under noisy environments. The algorithm
applies to the cases where both speech and noise
models use multiple Gaussian mixtures. Experi-
ments have confirmed the effectiveness of the al-
gorithm.
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