METHODS FOR IMPROVED SPEECH RECOGNITION
OVER TELEPHONE LINES

Alfred Hauenstein and Erwin Marschall

Siemens AG,
Corporate Research and Development, Dept. ZFE T SN 53,
81730 Munich, Germany

email: [Alfred.Hauenstein Erwin.Marschall}@zfe.siemens.de

ABSTRACT

Robust modelling and fast adaptation to changes in
transmission channels has yielded significant improvements
in speech recognition over telephone lines. Robust model-
ling is achieved by using a special version of the LDA-trans-
formation including a two frame context and subtraction of
the mean channel seen in training. A fast maximum likeli-
hood channel adaptation copes with variations in character-
istics of transmission channel and speaker during real world
operation. Evaluation of these techniques on different data-
bases demonstrates reductions of word error rates up to
70%, suggesting that significant improvements in recogni-
tion performance may be achieved by better acoustic-pho-
netic modelling and fast adaptation.

1 INTRODUCTION

Speech recognition on data transmitted over real
world telephone lines imposes strong requirements on
speech modelling. Problems are compounded when differ-
ent communication sets or transmission methods (analog,
digital, cellular) are used in training and recognition.

The main application areas we tackle are spoken
commands or digits for use of advanced telecommunication
services (e.g. interactive voice response). Speech controlled
operation is of particular importance as touch tone operation
is not generally available in German public telephone net-
works. We therefore implemented isolated word recognition
and word spotting on small vocabularies.

In this paper we investigate two approaches in order
to achieve more robust modelling and a fast adaptation to
changes in the transmission channel. First we introduce Lin-
ear Discriminant Analysis (LDA), which integrates a two
frame context and subtracts the mean channel seen in train-
ing. Second, we add a maximum likelihood channel adapta-
tion, which adapts very fast to the transmission channcl and/
or speaker characteristics.

425

2 THE BASELINE RECOGNIZER

Our baseline speech recognizer implements Continu-
ous Density Hidden Markov Models (CD-HMM) with
Laplacian density functions. For each frame (10 ms spaced)
we extract a 51 element feature vector. It consists of 24 mel-
scaled cepstral!, 12 Acepstral, 12 AAcepswral, 1 energy,
1 Aenergy, and 1 AAenergy components [1]. We use con-
text-dependent diphone models. Each phoneme consists of 3
segments; each segment is modelled by 2 states with tied

- emission probabilities.

3 MODELLING IMPROVEMENTS

3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a well known
preprocessing step for calculating a proper set of discrimi-
nant features [5], [6]. The basic idea is to find a linear trans-
formation such that a suitable criterion of class separability
is maximized. Usually the transformation is obtained as the
eigenvector decomposition of the product of two scatter or
covariance matrices, the total-scatter matrix and the inverse
of the average within-class scatter matrix. This yields a sin-
gle class-independent transformation matrix (LDA-matrix)
[2].

We apply a modification of the general framework in
calculating the LDA-matrix stepwise and subtracting the
total mean of the original feature vectors. This avoids some
numerical problems (e.g. by a pinned component of the fea-
ture vector) and guarantees robustness.

In the first step the within-class scatter matrix S is
diagonalized yielding the eigenvector matrix U and the
eigenvalue matrix A = diag {A;} (weighted mean of vari-

1. For conveniance we write ‘cepstral coefficients’ instead of
correctly ‘cepstrally smoothed spectral coefficients’.
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ances over classes). Let A = max;{A}, a lower

boundary A, =0.14__ isapplied:
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(modified whitening transformation). This yields a transfor-
mation matrix

B=U- A2 )

classes scatter matrix §, = B'S »B is diagonalized yielding
eigenvectors V and eigenvalues {o;} . Let the eigenvalues
be ordered according to magnitude. Neglection of the small-
est eigenvalues reduces the number of components of the
transformed feature vector and thus gives a systematic way
of parameter reduction. In summary, given a cepstrally
smoothed input feature vector ¢ the following transforma-
tion is applied:

y=4(c-m) 3

where A = UA—VZY is the (rectangular) LDA-matrix

described above. m is the total mean of all original feature
vectors seen in training. Therefore m subtracts the “mean
channel* and “mean speaker* as seen in training.

After transformation the mean variance of each fea-
ture component is 1. This offers the possibility to rescale
each component to a given number interval.

Within this framework several decisions have to be
made:

- choice of the proper classes to be discriminated

- using a single feature vector or several successive
frames jointly (“supervector*).

- number of components to be retained.

- handling the class “silence® in calculating S, S,
and m in order to avoid domination of these three
quantities by the “silence* class.

As our baseline system relies on the use of phoneme
segments we choose these segments to be the classes being
discriminated. Beside other reasons, consecutive feature
vectors are correlated because we use overlapping frames.
The use of supervectors thus allows to model the joint den-
sity of the observed speech more accurately. Therefore we
decided to use n-frame supervectors. Results are given for
the 2-frame case resulting in a 102 element supervector and
retaining 51 components after transformation (so the num-
ber of parameters to be estimated is about the same as for
the baseline system). With respect to the “silence® class dif-

ferent possibilities were tried. In the results presented the
“silence* class is neglected entirely.

We apply a two-step training. Starting with a non-
LDA CD-HMM the segmentation of training data with
respect to class labels is determined for calculating the scat-
ter matrices §,, and S,- The described operations deliver
the LDA-matrix. In the second step an iterative training is
done using LDA transformed feature vectors.

. 3.2 Maximum Likelihood channel adaptation
In the second step the transformed average between-

A problem of real world application of speech recog-
nition arises from the fact, that recording conditions of train-
ing data and operating conditions differ due to variations in
transmission channels, recording equipment, and human
factors (stress, casual talkers, ...)

It is well known that subtracting a long-term average
spectrum from the speech signal improves recognition
because it estimates speaker- and/or transmission-channel
properties [3], {4], [7). Unfortunately, estimating a long-
term average is not reliable in our applications, as speakers
hold the telephone lines only for few seconds and utterances
are very short. Furthermore, adaptation has to be performed
online, in order to react immediately to user commands.
Therefore we designed a very fast adaptation algorithm,

We assume that variations are an additive distortion
vector x, () in the cepstral domain:

Ce (1) = cpo (1) +x,(0), @

where ¢, (¢) is the feature vector seen in the training and
c (#) is the resulting distorted feature vector, with
ke [1,...,24] denoting the component index of the fea-
ture vector?. The distortion vector x, (t) is modelied as nor-
mally distributed:

&)

-2

) 1 ( (%0 = %p) )

p(x,y) = — -exp .
k0 A/Zn-ck 6‘2

x, and 62 are the component dependent mean and variance
of the normal distribution and are derived from the training
database.

In order to determine the actual distortion during rec-
ognition we calculate a maximum likelihood (ML) estimate
for each component:

2. For adaptation we deal with the base cepstrally smoothed coef-
ficients only, as the energy, A and AA components are linear
superpositions of the base components.
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o () = 1 (ak(t)ik'f'ik(f))- 6)

+ oy, (1)

x, () is the recursively computed mean of the test data.
a, (1) can be interpreted as a component and time (!)
dependent first order filter coefficient and is calculated as
follows:

o2 (1)
ak(l) = ak(tact) = —':i (7)

t o)

act 9k

t,., is the actually used “memory length* of the recursion:

tyey = min{t—t,t, ..} +AT, ®

where ¢, is the starting frame for estimation. This means,
that in order to get a fast adaptation to the current distortion
we consider the last ¢, , frames only. AT is a positive num-
ber determining adaptation near ;. 02 (t) is the variance
of the test data. Due to algorithm simplifications and to
make the computations more robust and less time consum-
ing we set:

ol (n) = o2, )
where o2, is the mean of the variances of the different
channels of the training data. As can be seen from eq. (7)
ak(t) starts with high values, because the denominator
becomes small for short times ¢, , and the first term in the
numerator of eq. (6) (x,) dominates the estimation. With
increasing ¢, the filter coefficient decreases and x. (0
(the mean of the test data) becomes more important. (We
apply ¢, for the calculaion' of X,(1) too:

X (1) = X (e )

We obtained best results when setting ¢, . 10 an
upper bound of 25 frames. This means that we use, indepen-
dent of the length of the utterance, at most the last 250 ms
data forthe ML estimation. This guarantees a fast adaptation
to the most recent acoustic events.

The estimated distortion vector components X;q (£)
are subtracted from the extracted (distorted) feature vector
_components ¢, (¢) in order to get the adapted cepstrally
smoothed vector components ¢, (¢) :

Cro (D) = ¢, () — X0 (1) (10
Cyo (1) are assumed to be the not distorted feature vector
components and are used as input for the LDA.

We do not differentiate between speech and non-
speech signals for the estimation. Therefore our adaptation
takes into account speaker as well as transmission channcl
variations. In our experiments different sets of estimation

parameters for speech and non-speech signals led to worse
results than the “pooled* parameter set. We suppose this is
due to uncertainties in the speech / non-speech discrimina-
tion algorithm.

It is important to notice that we reinitialize the esti-
mation when a new call is set up, i.e. when a new speaker or
transmission channel has to be adapted.

4 RECOGNITION EXPERIMENTS

All recognition experiments using LDA and ML
channel adaptation (ML-CA) are carried out on isolated
words. The vocabulary consists of the 11 German digits
(including two representations for “2*“: ‘zwo’ and ‘zwer’).
The sampling rate of all data used is 8 kHz.

4.1 Databases for training and test

For training we use two different databases collected
over the German public switched telephone network
(PSTN). The databases used are characterized in table 1.

For training database “TIL“ 193 speakers uttered
approximately 30 different connected digit strings (approxi-
mately 18 000 digits in total). Database “VM" contains iso-
lated words and is divided in one training and one test set
(test and training sets are non-overlapping). The set used for
training contains 591 speakers and has approximately the
same size (in seconds of speech) as TIL.

name of roperties No. of
database proper utterances
VM isolated words (digits and com- Test: 1235
mands) recorded over the German Training:
PSTN (analog, digital and cellular); 15804
testset contains digits only
TIL connected digits; same recording 6206
equipment and conditions as VM
FF isolated digits; high quality office 2200
recordings
ISDN isolated digits; recordings over the | 2260
German public telephone network
(analog and digital) with an ISDN
telephone
TESDA isolated digits; recordings of partly | 2569
corrupted utterances

Tab. 1: Characterization of databases used

In all test databases the transmission channel varies
from utterance to utterance. As each test utterance is a single
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word, we could test the speed of our adaptation algorithm.
For further characterization of the test databases refer to
table 1.

4.2 Recognition results

The recognition results using the TIL database for
training are shown in table 2. One has to take into account
that the training database contains connected digits, while
the test databases consists of isolated digits only. The error
rates are the sum of substitutions, insertions, and deletions.

Training database | = . vM | 1sDN | TEsDa
=TIL

baseline 30% | 91% | 175% | 112%

recognizer

baseline + LDA 14 % 62% 50% 9.0 %

‘;:ﬂ‘:“: +IDA+ | ysq | 61% | 41% | 70%

Tab. 2: Error rates for different test databases using
training database TIL

The recognition results for the training database VM
are shown in table 3. Absolute error rates on all databases
are the same or better than when using training database
TIL. We attribute this result to the fact that coarticulation
effects in database TIL influence the density functions of the
HMM. Relative improvements are comparable to those
determined using training database TIL.

Training database | g vM | ISDN | TEsDA
= VM
baseline
‘ 31% | 90% | 134% | 94%
recognizer
baseline + LDA 1.5 % 63 % 49 % 71 %
baselin
M“i"_C:*LDA" 15% | 47% | 36% | 574

Tab. 3: Error rates for different test databases using training
database YM

5 CONCLUSION AND FUTURE WORK

The results show remarkable improvements (up to
60%) in error rates on all databases when using the LDA.
The LDA applied here shows better performance than the
»standard“ LDA. This can be attributed to thc use of addi-
tional frame context in the feature vector (supcrvector) and

to the subtraction of the total mean over the training data-
base.

The maximum likelihood channel adaptation shows
additional improvements (up to 27%). It is important to
notice that the error rate did not increase but decrease when
the recording equipment was the same in training and test
(VM database). When the tests already showed very good
results without ML-CA for high quality recordings (FF data-
base) the error rate did not increase either.

In order to further improve the ML channel adapta-
tion we will try to implement a more precise speech / non-
speech discrimination and to improve the calculation of the
parameter sets.

First experiments on 16 kHz sampled continuous
speech data showed promising reductions of the error rate,
when using a 3-frame supervector for LDA and a ML chan-
nel adaptation over a longer estimation interval (some sec-
onds).
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