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ABSTRACT

This paper describes to what extent the subband-auto-
correlation(SBCOR) analysis is robust against waveform
distortion and noises. The SBCOR analysis, which has
been already proposed, is a signal processing technique
based on subband processing and autocorrelation analy-
sis so as to extracts periodicities present in speech sig-
nals. First, it is shown that SBCOR is robust against se-
vere waveform distortions such as zero-crossing. Although
the zero-crossing distortion deteriorates the performance of
conventional recognition systems, such distorted signals are
still intelligible for humans. The experimental results using
a DTW word recognition show that the SBCOR(Q=1.0)
performs about 19% higher than smoothed group delay
spectrum(SGDS), when the test signals are distorted by
zero-crossing. Second, it is shown that SBCOR is more
robust against multiplicative signal-dependent white noise,
Gaussian white noise, and a human speech noise than
SGDS. The validity of the SBCOR is larger when the noise
is white than when the noise is the human speech noise.

1. INTRODUCTION

In speech recognition systems, the speech analysis part is
the front end for the acoustic environment. Since the acous-
tic features lost there cannot be recovered in later stages,
what features and how to extract them from acoustic signals
is one of the most important problems in speech recognition.
It seems that insufficient investigations for the problem is
the reason why good recognition performance has been ac-
complished only under “laboratory conditions”. Nowadays,
since some powerful recognition algorithms such as HMM
are available, to overcome the problem above is the best
way to improve robustness in speech recognizers[1].

In order to tackle the problem, we have proposed a new
signal processing technique based on subband processing
and autocorrelation analysis, namely, subband-autocorre-
lation(SBCOR) analysis[2, 3]. This SBCOR analysis has
been developed so as to extract periodicities associated
with the inverses of the center frequencies. The basic idea
comes from the auditory models proposed by Seneff and
Ghitza[4, 5]. The SBCOR has been shown to be robust
under the multiplicative signal-dependent white noise that
has constant SNRs at any points.

In this paper, we investigate to what extent the SBCOR
analysis is robust against zero-crossing distortion and three
types of noise, using another implementation of the SBCOR
with a DTW word recognizer. Besides, it is also shown that
SBCOR is robust under constant SNRs at any points using
an HMM based phoneme recognizer.
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Figure 1: The flow diagram of the SBCOR analysis.

2. SBCOR ANALYSIS

2.1. Method

The SBCOR analysis is based on filter bank and autocor-
relation analysis, and aims to extract periodicities included
in speech signals. The importance of such information for
speech recognition has been shown by Seneff and Ghitza in
the research of auditory modeling[4, 5].

Figure 1 shows an implementation of the SBCOR analysis
used in this paper. The SBCOR analysis calculates an ar-
ray {Si(n),i = 1,---, N} of the autocorrelation coefficient
at the lag 7.s, which is associated with the fc—fl, of each
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Figure 2: The explanation of the robustness. The CF means
the center frequency of the Gaussian BPF. If the white noise is
additive, the influence of the noise in detecting the formant's
component is less at lag CF~* than at lag 0.
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Figure 3: In frequency domain, the SBCOR analysis is inter-
preted as a weighted sum of power spectrum.

subband signal passed through the filter bank {H;(f),i =
1,-+-,N}. The array {Si(n),i = 1,---, N} is interpreted
as a “spectrum” and referred to as “SBCOR spectrum”.
As for the filter bank, a fixed Q one whose center frequen-
cies are equally spaced on the Bark scale has been shown
to be suitable for speech recognition under noisy conditions
so far[2, 3]. In this paper, the filter bank consists of 128(in
shown analysis examples) or 16(in recognition experiments)
fixed Q gaussian bandpass filters(BPF) defined by
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|Hi(f) 2 = e 2°U~0e0” | f120,C = 2
<

. (1)

2.2. Why the SBCOR can be robust against noise

The robustness of the SBCOR against noise is explained
in Figure 2. Here, suppose that the noise is white and the
input signal has the spectrum whose first formant coincide
with the center frequency of the BPF, depicted in the mid-
dle plot. Then, the subband-autocorrelation coefficients for
each signal can be derived as the right-upper and the right-
lower plots respectively. Assume that the noise is additive.
Then, since the noisy coefficients affect additively the coef-
ficients of the input signal, the influence of noise in detect-
ing the formant is lower at lag CF~! than at lag 0, which
corresponds to a classic filter bank case. The extension of
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the SBCOR, considered the integral multiples of CF™!, has
been already described in [6].

Moreover, in the frequency domain, the SBCOR analysis
is interpreted as a weighted sum of power spectrum from
the equation in Figure 1, as shown in Figure 3, where the
weighting function is

w(f) = e~ 20U =fer)? cog 27 fTef.

(2)

Further consideration in terms of this aspect is beyond the
scope of this paper.

3. ROBUSTNESS AGAINST ZERO-CROSSING

DISTORTION

In this section, we select zero-crossing distortion as an
example of severe waveform distortion, and investigate the
SBCOR robustness.

3.1.

We define a zero-crossing distorted signal as follows:

Zero-Crossing Distortion

n

>
n)l=

y(n) = 0 (3)

{ a x sgn(z(n)) | z(n)|
0 | z(n) |
where z(n) and y(n) are the input signal and the zero-
crossing distorted signal, respectively. The gain a is de-
termined so that the power of the input signal is preserved.

Such zero-crossing signals are still intelligible for humans,
but the performances of conventional speech recognizers de-
teriorate significantly. The reason seems to be that the
speech features used in conventional recognizers do not al-
ways represent enough of the speech information contained
in the speech signal. For example, Figure 4 shows speech
features of the smoothed group delay spectrum. As can
be seen, the zero-crossing distortion influences the formant
structure significantly. The SBCOR analysis, however, is
stable for such distortion, as shown in Figure 5. The fol-
lowing recognition experiments will quantitatively evaluate
the robustness.

3.2.

A standard DTW speaker-dependent isolated word recog-
nizer is used. The recognition task is a 68 pair discrimina-
tion[7). Each pair is a phonetically similar city name pair,
selected from a 550 Japanese city name database recorded
twice by 5 Japanese male speakers. The sampling rate is
10 kHz. The first set is used as the reference pattern and
the second set, which was spoken a week later, is used as
the test pattern. The test signals are distorted by Eq.(3).
In extracting speech features, the length and shift of the
analysis window are 20ms and 10ms respectively.

Moreover, the performance of the SBCOR spectrum is
compared with that of the smoothed group delay spec-
trum(SGDS), already shown to be robust(7, 8. The SGDS,
as distinct from the SBCOR, is a speech representation
based on the group delay characteristic of the speech signal,
and is defined as the derivative of the phase for an all pole
filter that has smoothed poles. In order to compare the
performance of the SBCOR with that of the SGDS under
exactly the same conditions, the analysis frequency points
are chosen to be the same center frequencies of the SBCOR,
which are equally spaced between 4 and 17Bark.

Experimental Conditions



Table 1: Average recognition rate for zero-crossing signals.

FEATURE | CLEAN | ZERO-CROSSING
SBCOR{QL.0) | 95.6% 87.8%
SBCOR({QI.3) | 96.8% T1.6%

SGD3 97.2% 68.5%

3.3. Results

The results are shown in Table 1. Although the
performance of the SGDS(the pole smoothing parame-
ter v=0.925) for- zero-crossing signals deteriorates signifi-
cantly, that of the SBCOR is higher about 19%(Q=1.0) and
9%(Q=1.5) than that of the SGDS. These results indicates
that the SBCOR spectrum is much more robust against the
zero-crossing distortion than the SGDS.

4. OTHER TYPES OF NOISE

In this section, we show the robustness against three types
of noise, namely, the multiplicative signal dependent white
noise, the Gaussian white noise, and a human speech noise.

4.1. Three types of noise

The multiplicative signal dependent white noise is defined
as follows:

§(m) = s(m)(1 +a-r(n)), <(dB] = 10logso 5 ()

where s(n) is the clean speech signal, s'(n) is the noisy
speech signal, a is the relative noise amplitude, z is the de-
sired SNR, and r(n) is an uniform distributed random num-
ber between -1 and 1. Since the SNR of the noisy speech
signal is constant anywhere, we can demonstrate the quan-
titative characteristics of the robustness.

The Gaussian white noise is a white noise whose am-
plitude distribution is Gaussian. We generated it using a
Gaussian random-number generator on computer.

Finally, in order to create a noise whose spectrum repre-
sents approximately the frequency characteristics of human
speech, we added cyclically a long speech signal to a fixed-
length buffer. The speech signal was created by concate-
nating the ATR phoneme balanced Japanese phrases(3,200
phrases, the longest phrase is about 15 seconds) spoken by
30 males and 34 females in the Continuous Speech Corpus
for Research edited by the ASJ. The fixed-length buffer is
3 seconds long. Here, we refer to it as a “human speech
noise”. The power spectrum density is shown in Figure 6.
This human speech noise is considered as a pink noise where
there is no pitch sensation.

The robustness of the SBCOR against these types of noise
is evaluated by following recognition experiments.

4.2. Experimental Conditions

The performed DTW word recognitions are the same as
the one used in previous section. The Gaussian white noise
and the human speech noise are added to the test signals,
based on the global SNR.

4.3. Recognition Results

Figure 7 shows the recognition rates of the SBCOR, made
as a function of Q(left side), and the comparison with that
of the SGDS(right side). As shown in the figure, the SB-
COR spectrum performs equally as well as the SGDS under
clean conditions, and better than it under noisy conditions,
for all noises. Besides, the best Q for the white noises is 1.5,
while the best one for the human speech noise is 2.0. The
reason seems to be that the noise components at the low fre-
quencies can be attenuated by narrowing the band width.

500 600 700
(a) CLEAN

(b} Zero Crossing
Figure 4: Analysis Examples of the SGDS for clean(a) and
zero-crossing(b) signals. The utterance is “bakuonga” in
Japanese, spoken by a female speaker. The length and shift
of the analysis window is 32ms and 4ms respectively.
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Figure 5: Analysis Examples of the SBCOR(Q=1.0). The
utterance and the analysis conditions is the same as Figure 4.
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Figure 6: The power spectrum density of the human speech
noise estimated by the Blackman-Tukey method. It has a peak
at about 250Hz, and the slope is about 10 dB/Oct. The
attenuation beyond 4.5kHz is due to the anti-aliasing filter.

Note that the following two facts suggest that the best per-
formance may be related with the shape defined by Eq.(2);
(i) the differences between the SBCOR and the SGDS are
smaller when Q=1.5 than when Q=2.0, (ii) increasing the
Q beyond 1.5 or 2.0 has no advantage.

5. HMM BASED PHONEME RECOGNITION

Finally, we evaluate the robustness at phonemic level.

5.1. Recognizer and Database

The task is 23 phoneme speaker-dependent recognition
for the /a,i,u,eo0,b,d,gm,n,N,p,tkshrywztschsh/ us-
ing HMMs. Each HMM is left-to-right and seven mix-
ture HMM. The parameter estimation was performed using
the 2620 even-numbered words in the ATR Japanese 5240
speech database(two male and two female speakers). The
speech data for tests were collected from the odd-numbered
2620. The sampling frequency is 10 kHz. To examine the ro-
bustness against noise, the multiplicative signal-dependent
white noise is added to the database for tests.

5.2. Results

Figure 8 shows the average recognition rates of the SB-
COR spectrum, plotted for the SNR of the test database.
When the SNR falls, the best Q becomes low gradually.
When it is taken into account that the best Q for low SNR
is not the best for high SNR and vice versa, the best Q is 1.5.
Moreover, although the performance of the SBCOR(Q=1.5)
is slightly worse than that of SGDS under clean conditions,
the SBCOR. performs much better than the SGDS under
SNR 20 and 10dB. Under SNR 0dB, since the absolute
rate of both are about 10%, which is close to the chance
level(about 6%), the evaluation makes no sense.

6. CONCLUSIONS

In this paper, we showed that the SBCOR is robust
against severe waveform distortion such as zero-crossing and
three types of noise using a DTW recognizer. This results
indicate that the SBCOR. extracts the speech features that
are not captured sufficiently by conventional speech analy-
ses. As for the robustness at phonemic level, we could verify
it as long as the noise is the multiplicative signal-dependent
white noise. For the other noises, we should investigate fur-
ther. (The C source program of the SBCOR analysis used
in this paper is available from ftp.itakura.nuee.nagoya-u.ac.jp
or http://www.itakura.nuee.nagoya-u.ac.jp.)
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(c) Human Speech Noise
Figure 7: Recognition Rates of SBCOR made as a function of
BPF’s Q(left side) and comparison with that of the SGDS(right
side) for the signal-dependent white noise(a), the Gaussian
white noise(b), and the human speech noise(c).
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Figure 8: Recognition Rates of the SBCOR and the SGDS
using the HMM recognizer.
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