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ABSTRACT

A new set of LP-derived features is introduced. The
concept of these features is motivated by the power
sum formulation of the LP cepstrum. Due to the fact
that the LP model implies that the resulting poles are
either real or occur in complex conjugate pairs, the
power sum of the poles is equivalent to the power sum
of their real components. Therefore, the LP cepstrum
is associated to the power sum of the real component
of the LP poles. This fact is utilized in deriving a
new set of features that is associated to the imaginary
components of the LP poles. We refer to this new set
of features as the sepstral coefficients. We have found
that the sepstral coefficients and cepstral coefficients
are relatively uncorrelated. Hence, they can be used
jointly to improve the performance of pattern classifi-
cation applications where cepstral features are usually
used. In this paper we present some preliminary results
on speaker identification experiments.

1. INTRODUCTION

Feature extraction is the process of deriving a compact
“ set of parameters that are characteristic of a given sig-
nal. These parameters are desired to preserve all the
information relevant to the application, and to have no
redundancy in representing the signal.

In speech processing the majority of pattern classi-
fication systems use some type of short time spectral
analysis followed by a certain transformation as a fea-
ture extraction step. The most effective and widely
used spectral analysis techniques are LP analysis and
filter bank analysis. This paper deals with LP-derived
features.

The short-time transfer function of the LP model is
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given by:
1 1
Ao~ 15 S am

where A(z;m) is the short-time LP polynomial, m is
the frame index representing the temporal dimension,
P is the order of the LP model, and a;(m) is the set of
prediction coefficients of the m*® frame.

Several feature sets can be derived from H(z;m)
[1, 2, 3]. Generally, cepstral features are found to be
the most effective.

The short-time LP cepstrum is defined as the in-
verse z transform of the natural logarithm of the short-
time LP transfer function H(z;m). It can be viewed as
the impulse response of In H(z; m) which is given by:

H(z;m) =

InH(z;m) =) ca(m)z™" (2)
n=1

where c,(m) is the n'® cepstral coefficient of the mt®
frame.

A simple and unique recursive relationship between
ca(m) and the prediction coefficients a,(m) can be ob-
tained by differentiating both sides of equation (2) with
respect to z~! and equating the coefficients of equal
powers of z71 [1].

An alternative method of obtaining the short-time
cepstral coefficients is by relating them to the poles
of H(z;m) and hence to the center frequencies and
bandwidths of the resonances. The transfer function
H(z;m) can be expressed in terms of its short-time
poles z;(m) as:

1
I,(1 - zi(m)z-1)

By substituting equation (3) in equation (2) one gets

H(z;m) =

3)

P o0
Zln(l —zi(m)z7) = — Z en(m)z™. (4)
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The factor In(1 — z;(m)z~1) can be expanded [5] as

o0

In(1 ~ z(m)z~) = = Y Za(m)tz .

n=1

(5)

By combining equation (4) and equation (5), en(m) can
be expressed in terms of the roots of the LP polynomial
as follows.

P
1 n
oalm) = 23D ai(m" ©)
Thus ¢a(m) can be interpreted as the power sum of the
LP polynomial roots normalized by the cepstral index
[6].

Since zj(m) is associated with time varying center
frequencies w;(m) and bandwidths B;(m) by the rela-
tionship

(7)

zi(m) = e~ BilmHIim),

cn(m) can be expressed as:

P
en(m) = % 3 enl=Blm)tiwi(m)

i=1

1 P
23 e BU (cos(rn(m) + jisin(rsi(m)
- (8)

The fact that {z;(m)} can either be real or occur in
complex conjugate pairs results in the cancellation of
the imaginary component of equation (8). Hence, ¢, (m)
can be expressed as

1 &
ca(m) = ~ Ze""B"(m)cos(nw,'(m)). (9
i=1

Thus the cepstral coefficients are associated with the
real components of z;{(m), and can be interpreted as a
nonlinear transformation of the center frequencies and
bandwidths.

2. SEPSTRAL COEFFICIENTS

The representation given in equation (9) suggests vari-
ous alternate representations based on the formant cen-
ter frequencies and bandwidths. For example, the or-
thogonal complement to ¢, can be used, i.e.,

1 P
sn(m) = = 30" Msin(jnwi(m)l),  (10)

which we call the sepstral coefficients. The sepstral
coefficients differ from the cepstral coefficients in that
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Figure 1: The covariance matrix of (a) the cepstral
coefficients, and (b) the sepstral coefficients, both nor-
malized by their standard deviations.

the sine function alters the contribution of the poles in
the computed coefficients. For example, it filters out
the real poles’ contribution, as opposed to the cosine
function which weights those poles more heavily. The
absolute value of the frequencies in equation (10) is
used to avoid cancellations.

Similar to the cepstral coefficients, the sepstral co-
efficients possess the desirable property of having a
nearly diagonal covariance matrix (i.e., have little re-
dundancy in representing the signal). Figure (1) shows
mesh plots of the covariance matrices of c,(m) and
sn(m) normalized by their standard deviations. They
are extracted from a 10 sec utterance partitioned into
overlapping frames of 30 msec length and 15 msec over-
lap. The sepstral coefficients are found to be nearly or-
thogonal to the cepstral coefficients. Hence,they can be
used as a reinforcing set of features with the cepstral
coefficients for a better recognition performance. To
demonstrate the orthogonality of s, (m) with respect to



08 1 1.2
Cepstral Distance

Figure 2: Scatter plots of cepstral vs. sepstral distances

ca(m) we show a scatter plot of the cepstral distance
dcep versus the sepstral distance d,e, for a sequence
of speech frames. These distances are computed from
¢a(m) and s, (m) (compared in a consecutive manner)
as follows:

deep(m) = D _(ea(m) —ca(m—1))°.  (11)

duep(m) = 3 (a(m) — sn(m — 1))

n

(12)

Figure (2) shows a scatter plot of dcep(mn) versus dyep(m).

The normalized correlation coefficient between these
two distances is found to be 0.55. Since both cep-
stral and sepstral features carry similar information,
the value of 0.55 is not high. This based on the ar-
gument of Soong and Rosenberg [7] where they stated
that a value of 0.6 for the correlation between cepstral
and differential cepstral (A-cepstrum) distances is rel-
atively low.

The differential sepstral features (A-sepstrum) were
also examined and found to be almost completely un-
correlated to the A-cepstral features. The normalized
correlation coefficient between the A-cepstral distance
and the A-sepstral distance is found to be less the 0.1.
The scatter plot between these two distances is shown
in figure (3).

3. PRELIMINARY EXPERIMENTAL
RESULTS

A text independent speaker identification experiment
is conducted on the San Diego speakers of the narrow-
band portion of the King database. For the results
reported in this paper, training is done on one session
(session 1), while testing is done on each of the other
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Dalta-Sepstral Distance

Figure 3: Scatter plots of A-cepstral vs. A-sepstral
distances

nine. Due to the division of the data, testing on sessions
among 2 to 5 is denoted by the “within the great di-
vide” experiment, whereas testing on sessions among
6 to 10 is denoted by the “across the great divide”
experiment. The classifier used here is a VQ classi-
fier [4]. During training, a codebook of 46 codewords
is constructed to model each speaker. Upon identify-
ing an unknown speaker, each test vector is compared
to the codebook of each speaker. The codebook en-
tries which are closest to the test vectors are found
using full search, and the corresponding distances are
recorded. The distances are accumulated for each code-
book and the unknown speaker’s identity is chosen as
the one corresponding to the codebook associated with
the minimum accumulated distance.

Sepstral and cepstral features are combined using
the same method utilized for combining instantaneous
and transitional cepstral features [7].

Table 1 shows the identification results using cep-
stral coefficients and using combined cepstral & sep-
stral coeflicients. The “within the great divide” exper-
iments shows no improvement due to the combining of
the cepstral and sepstral features. However, the “across
the great divide” shows over 8% improvement in the
identification percentage over using cepstral features
alone. This suggests that the benefit of combining cep-
stral and sepstral features is manifested when there is
a mismatch between the training and the testing data.
The improvement could be attributed to the fact that
sepstral coefficients filter out the real poles which only
contribute to overall spectral slope. It is well-known
that the overall spectral slope is greatly affected by
mismatched channels and microphones between train-
ing and testing data.



test session || cepstrum || cepstrum & sepstrum
2 23/26 23/26
3 17/26 16/26
4 16/26 17/26
5 16/26 18/26
average 69.23% | 71.15%

N

‘within the great divide”

test session || cepstrum | cepstrum & sepstrum
6 11/26 12/26
7 12/26 13/26
8 13/26 15/26
9 12/26 15/26
10 12/26 16/26
| average 46.3% 54.6%

“across the great divide”

Table 1: Incorporating sepstral coefficients with cep-
stral coefficients

4. SUMMARY AND CONCLUSION

In this paper we have introduced a new set of features
associated with the imaginary components of the LP
poles. These features are referred to as the sepstral
features. The sepstral features are found to be rela-
tively uncorrelated to the cepstral features. Therefore
both cepstral and sepstral features can be combined to
yield improved recognition rates for different applica-
tions. In a preliminary speaker identification experi-
ment performed on a portion of the King database the
combining of the cepstral and sepstral features is found
to be advantageous especially when there is a mismatch
between the training and the testing data. It should
be noted that this experiment is by no means conclu-
sive, and additional experiments need to conducted.
Also, the suggested features are not specific for speaker
identification. Hence, they can be tested for other ap-
plications such as speech recognition. The differential
sepstral features are found to be almost completely un-
correlated with the differential cepstral features. This
finding was not used in the provided experiments since
differential features in general were not found to be
helpful in this particular application [8].
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