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ABSTRACT

We describe a novel paradigm for automatic speech recognition in
noisy environments in which an initial stage of auditory scene anal-
ysis separates out the evidence for the speech to be recognised from
the evidence for other sounds. In general, this evidence will be
incomplete, since intruding sound sources will dominate some
spectro-temporal regions. We generalise continuous-density hidden
Markov model recognition to this ‘occluded speech’ case. The tech-
nique is based on estimating the probability that a Gaussian mixture
density distribution for an auditory firing rate map will generate an
observation such that the separated components are at their
observed values and the remaining components are not greater than
their values in the acoustic mixture. Experiments on isolated digit
recognition in noise demonstrate the potential of the new approach
to yield performance comparable to that of listeners.

1. AUDITORY SCENE ANALYSIS AS A
PREPROCESSOR FOR SPEECH RECOGNITION

Auditory scene analysis (ASA) describes the process by which lis-
teners separate out and pay selective attention to individual sound
sources within the mixture which reaches their ears [1]. Recent
work at Sheffield [2,3] and elsewhere {4,5,6] has achieved some
success in computational modelling of ASA based on grouping
principles such as common onset, periodicity and good continua-
tion of source components. If ASA depends on these unconditional,
primitive processes, they may be viewed as a natural preprocessing
stage for ASR. In contrast to most schemes for robust ASR (see
Grenie & Junqua [7] for a review), this suggestion has the advan-
tage that it does not require 2 model of the noise. Furthermore, there
need be no assumption about how many sound sources are present,
and the set of active sources may change with time.

Fig. 1 presents quantitative results from previous segregation stud-
ies (Cooke & Brown [8]) in terms of two metrics — SNR and char-
acterisation. The latter measures the percentage of the speech signal
recovered from a mixture. This figure illustrates that whilst we
achieve significant SNR improvements in each case, current audi-
tory scene analysis algorithms typically recover rather less than
40% of the energy associated with a target source. This is not sur-
prising, since we proceed on the basis of finding reasons to group
components. Some time-frequency regions will be masked to such
an extent that purely data-driven grouping is unlikely to recruit
them. We describe such data as occluded speech, although the anal-
ogy with visual occlusion should not be taken too far.

The work presented here explores the possibility that occluded
speech might contain sufficient information for recognition, and
proposes a two-stage approach to robust ASR: signal separation by
auditory scene analysis followed by recognition of the (incomplete)
segregated data. The main problem addressed is the modification of
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Fig. L. Results of computational ASA for speech mixed with 10 dif-

ferent noise sources (some of which are indicated on the figure).

SNRs are measured before and after separation. Each point repre-
sents an average over 10 sentences.

ASR techniques to handle such data. In [9] we showed that a
straightforward adaptation of Kohonen nets maintains an encourag-
ingly robust performance in a frame-by-frame phone labelling task
when an increasing proportion of the input vector is unavailable
(e.g. no significant deterioration up to 90% random removal using a
filterbank representation). Such nets can also be trained on partial
data. In this paper we report on recognition of occluded speech by
hidden Markov models (HMMs). Section 2 describes modifications
to the HMM probability computation for incomplete observation
vectors. Section.3 demonstrates the results of an experiment in
which simulated auditory scene analysis provides data for the mod-
ified Viterbi algorithm. comparing the results on digit recognition in
multispeaker babble with listeners’ performance. Section 4 extends
the approach by exploiting an auditory induction constraint.

2. HMM RECOGNITION OF OCCLUDED SPEECH
VIA MARGINAL DISTRIBUTIONS

In ASR using continuous density HMMs, each model state is asso-
ciated with a probability distribution for the p-dimensional obser-
vation vector x modelled as a finite mixture of multivariate
Gaussian distributions, so that the probability density function (pdf)
of x when the model is in state j has the form:

M
bj(x) = zcjkN(xs ujky Ujk) (l)
k=1
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Here, for each j, the ¢, for k = 1, ..., M are mixture coefficients
and N (x, Hip U;,) is the pdf of the p-dimensional Gaussian distri-
bution with mean vector Mg and variance-covariance matrix U %t

N (x, ij, Ujk) =
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where |U;,| is the determinant of U;; and * denotes transpose.

At the heart of the Viterbi recognition algorithm it is necessary to
compute the probability that a given distribution could generate a
given observation vector. For occluded speech, this probability
must be computed for a partial observation vector. If some of the
components of x are not observed, calculation of the probability
density can be based on the following distributional fact:

Suppose g < p of the components of x are not observed. Then, the
marginal distribution of the remaining components, x say, is also
of mixed Gaussian form, and the corresponding pdf is

M
b (x) = 3 NG, w,t UL 3
k=1

A formal proof is presented in Cooke, Green, Anderson & Abberley
[10]. Informally, the marginal is simply derived from the full mix-
ture density function by striking out the rows and columns from the
mean vector and covariance matrix corresponding to the missing
components. This is equivalent to integrating the distribution over
the missing components.

To investigate the marginal distribution technique for occluded
ASR we have performed a number of experiments in which varying
proportions of the observation vector are randomly masked out. In
[10] we demonstrated that in a phone recognition task using the
TIMIT database and MFCC-derived parameter vectors, more than
half the available components can be deleted without appreciable
deterioration in performance. This holds both for single and mix-
ture densities, and for diagonal and full covariance matrices.

In this paper we report on more realistic experiments, in which the
parameterisation is in the auditory rather than the cepstral domain,
the recogniser is presented with a mixture of speech and noise and
the occlusion is derived from simulated auditory scene analysis.

3. EXPERIMENTS — LISTENERS AND MODELS
3.1 The NOISEX corpus

NOISEX [11] is a corpus intended to facilitate comparative studies
of digit recognition in noise of various kinds and for a range of
SNRs. It includes both single-digit and digit-triple material: here
we have used only single digits — both training and test data consists
of 10 repetitions of each digit by a single speaker. Our digit models
have 8 emitting states with ‘straight-through’ topology and diago-
nal covariance matrices. The results presented here are for noise
type 06 (multispeaker babble) but similar patterns of results have
been found for other NOISEX sources. The HTK toolkit [12] was
adapted for this study.

3.2 Signal representation

Mixture signals were transformed into an auditory rate map - a
series of average firing rate vectors produced by a model of the
auditory periphery. The model consisted of a 64 channel gamma-
tone filterbank [13] covering the range 50 to 6500 Hz in equal steps
of ERB-rate. The output of each filter was further transformed by a
model of inner hair cell function [14].

3.3 Simulating auditory scene analysis

In the work reported below we have simulated the effect of ASA
rather than construct a complete data path from our segregation
algorithms. We have done this in order to explore the potential of
ASA as an ASR front end. The ASA grouping principles which we
have researched so far work well only for voiced speech. As a con-
sequence, the results presented are conditional on a future scene
analysis front-end being able to deliver a similar level of perfor-
mance as our simulation.

The simulation procedure is illustrated in Fig. 2. We preserve those
time-frequency regions in the rate map for each mixture in which
the local SNR exceeds a threshold — these are the regions which are
most likely to survive masking and be available for grouping by
ASA. The value of the threshold can be used to determine a trade-
off between the number of regions deemed to be part of the signal
and the SNR represented by this selection. For instance, if we were
to choose only those time-frequency regions where the local SNR is
greater than 3 dB, a large number of regions would be removed, but
the rate values would more accurately reflect those in the target sig-
nal. Conversely, an assumption that the auditory system could
recover those regions with an SNR greater than -3 db, say, would
lead to larger numbers of regions assigned to the speech source, but
with values dominated by the noise.

For comparison with human performance on the same task, listen-
ers were presented with the noisy digits across a range of SNRs.
Their results are shown as the bold lines in figures 3-5, demonstrat-
ing effectively perfect recognition at 0 dB SNR, falling off towards
chance level at -15 dB SNR.

Fig. 3 (left panel) shows recognition performance as a function of
global SNR for various local SNR thresholds used in the ASA sim-
ulation. At a local SNR threshold of -10 dB (i.e. the signal is
deemed to survive even if it is 10 dB below the noise), the model
shows a poor match to listeners’ performance except at very low
SNRs. It is unreasonable to expect to recover signals via ASA (or
any other technique) which are locally 10 dB down on the back-
ground. At the other extreme, a local SNR of 10 dB (i.e. the signal
is selected if it is locally 10 dB above the noise) serves to recruit a
very small number of time-frequency regions. It appears that these
are inadequate to characterise the signal judging by the recognition
performance. The best match to listeners’ data is achieved at a local
SNR of 0 dB (i.e. retain regions where the signal is locally more
energetic than the noise). However, a gap remains between simu-
lated ASA and human performance on this task.

Several explanations for this deficit can be hypothesised. Better per-
formance might be achievable through an auditory representation
based on neural synchrony rather than a rate representation. Paucity
of training data is another factor. However, a more interesting possi-

402



mix at given
global SNR

speech

(compute rate ma@

v

occluded speech

noise

HMM-based
partial matching

select time-frequency regions
with local SNR above threshold

)

Fig. 2. Procedure for auditory scene analysis simulation.

bility is that listeners may not only use an estimate of time-fre-
quency regions which are deemed to be dominated by the target
source, but could also verify their hypotheses against the mix as a
whole using constraints on auditory induction.

4. EXPLOITING AUDITORY INDUCTION

It is well known that listeners can perceptually restore or induce
missing acoustic elements so long as the missing regions are
replaced by a suitable occluding source. When applied to speech
perception, this is known as the phoneme restoration effect (Warren
[15]). Since occlusion is a natural consequence of overlapping
acoustic sources, auditory induction may be a powerful source of
constraint in normal speech perception.

In the HMM framework, this constraint can be formulated in terms
of the probability that components in the mix take on a value greater
than the expected value. We have adopted the following procedure
to incorporate this constraint into the calculation of bj (x):

1. Split observation x into subvectors s and m representing those
deemed to be part of the target signal and those representing the
remainder of the mix. For ease of presentation and without loss of
generality, assume components are re-ordered such that x = (s,m).

2. Compute bj (s) using equation 3 as before.
m.— .
3. Compute b; (m) as Herf( ' ')
i

o,
{
where erf represents the error function (computed using a Cheby-
shev approximation) and i ranges over subvector m.

4, Set bj(x) = bj(s) xbj(m)

Note that this is valid only for diagonal covariance matrices.

Fig. 3 (middle) shows the results obtained using this procedure. In
general, performance is improved at a global SNR of 0 dB, though
not greatly at lower SNRs. This is not altogether surprising since
higher noise backgrounds will be compatible with a larger number
of hypotheses, thus diminishing the value of the constraint.

Of interest here is the improvement at local SNRs of 0 and -5 dB,

the latter suggesting that a more liberal regime which allows
through time-frequency regions contaminated by noise may pro-
duce good performance at a range of global SNRs if used in con-
junction with an auditory induction constraint. It may be possible to
process the evidence from the two components, s and m, to give
greater or lesser weight to auditory induction in order to further
improve performance.

Fig. 3 (right) summarises the results at a local SNR of 0 dB, and
compares the simulated ASA performance with a recent study
using this database.

5. FURTHER WORK

This study demonstrates the potential for an ASA-based approach
to robust ASR. Of course, it is necessary to complete the automatic
path to determine whether computational ASA can deliver the sepa-
ration required to support the simulated performance. This is a
major focus of our current work, and will involve using ASA tech-
niques devised for voiced speech unconditionally — relying on the
induction constraint to fill in the gaps.

Another aspect of the new formalism involves training HMMs from
incomplete patterns. We have speculated that the distributions
learned in this way will be significantly different when using audi-
tory representations from those derived from clean speech [16].

The underlying model of grouping which fits most closely with this
work is one in which groups are signalled by some mechanism for
highlighting which tonotopic channels are similar along some audi-
tory dimension (e.g. common amplitude modulation, spatial loca-
tion, onset or offset). One attractive scheme which achieves in-
place grouping is that proposed by von der Malsburg & Schneider
[17], in which channels deemed to be responding to components of
the same acoustic source are forced to fire synchronously. We are
currently investigating similar neural oscillator models for auditory
scene analysis.
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Fig. 3. Isolated digit recognition in multispeaker babble as a function of global SNR. Performance at various indicated local SNRs for simu-
lated ASA (left), augmented by an auditory induction constraint (middle) is compared to that of listeners (error bars represent +/- 2 standard
errors). Results at a local SNR of 0 dB are redrawn in the right panel and compared to a recent NOISEX study.

REFERENCES

[11 A.S. Bregman (1990), Auditory Scene Analysis, MIT Press.

[2] M.P. Cooke (1993), Modelling Auditory Processing and
Organisation, Cambridge University Press.

[31 G.J. Brown & M.P. Cooke (1994), Computational auditory
scene analysis, Computer Speech & Language, 8, 297-336.

[4] T. Nakatani, T. Kawabata & H.G. Okuno (1993), ‘Speech
stream segregation by multi-agent system’, Technical Report
of IEICE SP-97 (1993-11).

[5] D.P.W. Ellis (1993), ‘A computer implementation of psychoa-
coustic grouping rules’, MIT Media Lab Perceptual Comput-
ing - Technical Report #224.

[6] D.K. Mellinger (1991), Event formation and separation in
musical sound, Ph.D. Thesis, Stanford University.

[71 M. Grenie & J.-C. Junqua (eds) (1992), Proceedings of the
ESCA Workshop on Speech Processing in Adverse Conditions,
Cannes (ISSN 1018-4554).

[8] M.P. Cooke & G.J. Brown (1993), ‘Computational auditory
scene analysis: Exploiting principles of perceived continuity’,
Speech Communication, 13, 391-399.

[9] M.P. Cooke, PD. Green & M.D. Crawford (1994), ‘Handling

missing data in speech recognition’, Proc. ICSLP-94, Yoko-
hama, 1555-1558.

{10] M.P. Cooke, P.D. Green, C.W. Anderson & D.C. Abberley
(1994), ‘Recognition of occluded speech from hidden Markov
models’, Dept. of Computer Science Research Report 94-
0501, University of Sheffield.

[11] A. Varga, HJ.M. Steencken, M.J. Tomlinson & D. Jones
(1992), ‘“The NOISEX-92 study on the effect of additive noise

on automatic speech recognition’, CD-ROM available from
the Speech Research Unit, DRA Malvern, UK.

[12] S.J. Young (1992), HTK Version 1.4: User, Reference and Pro-
grammer Manual, Cambridge University Engineering Depart-
ment, Speech Group.

{13] R.D.Patterson & J. Holdsworth (1992), ‘A functional model of
neural activity patterns and auditory images’, In: Advances in
Speech, Hearing and Language Processing Vol. 3 (ed. W. A.
Ainsworth), JAI Press, London.

[14] R. Meddis (1988), ‘Simulation of auditory-neural transduc-
tion: further studies’, Journal of the Acoustical Society of
America, 83 (3), 1056-1063.

[15] R.M. Warren (1970), ‘Perceptual restoration of missing speech
sounds’, Science, 167, 392-393,

[16] M.P. Cooke, M.D. Crawford & P.D. Green (1994), ‘Learning
to recognise speech in noisy environments’, Proc. ATR Work-
shop on Biological Foundations of Speech Perception and Pro-
duction, Osaka (published as ATR Technical Report).

[17] C. von der Malsburg & W. Schneider (1986), ‘A neural cock-
tail-party processor, Biol. Cybern., 54, 29-40.

[18] H. Van hamme. ‘Ardoss: autoregressive domain spectral sub-
straction for robust speech recognition in additive noise’, Proc.
ICSLP-94, Yokohama, 1019-1022.

404



