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ABSTRACT

We have recently developed a statistical model of speech
that avoids a number of current constraining assumptions
for statistical speech recognition systems, particularly the
model of speech as a sequence of stationary segments con-
sisting of uncorrelated acoustic vectors. We further wish to
focus statistical modeling power on perceptually-dominant
and information-rich portions of the speech signal, which
may also be the parts of the speech signal with a better
chance to withstand adverse acoustical conditions. We de-
scribe here some of the theory, along with some preliminary
experiments. These experiments suggest that the regions
of acoustic signal containing significant spectral change are
critical to the recognition of continuous speech.

1. INTRODUCTION

In [8], we proposed a perceptual model of speech as a se-
quence of Auditory Events (Avents), separated by rela-
tively stationary periods (ca. 50-150 ms). We hypothe-
size that avents occur when the spectrum and amplitude
are rapidly changing (as in [4]). These speech dynamics
are precisely those likely to generate enhanced activity in
the upper stations of the auditory pathway, and may be
fundamental components for the perception of continuous
speech. The statistical model uses these avents as funda-
mental building blocks for words and utterances, separated
by states corresponding to the more stationary regions. In
order to focus statistical power on the rapidly-changing por-
tions of the time series, all of the stationary regions are tied
to the same non-avent class. Markov-like recognition mod-
els use Avents as time-asynchronous observations. Discrim-
inant models are trained to distinguish among all classes,
including the non-Avent class. In the simplest scheme, the
training data are automatically aligned using dynamic pro-
gramming, and a discriminant system (e.g., a neural net-
work) is trained on the new segmentation. These two steps
are iterated, as discussed in [1]. Section 3 introduces an ap-
proach that actually minimizes the probability of errors at
the global or utterance level [2]). This process focuses mod-
eling power on the perceptually-dominant and information-
rich portions of the speech signal, which may also be the
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parts of the speech signal with a better chance to withstand
adverse acoustical conditions. A statistical framework that
is more commensurate with higher-level auditory function is
a better match to front-end modules that attempt to incor-
porate properties of the auditory periphery [6], particularly
when similar temporal auditory properties are incorporated
[7). We have named this new framework the Stochastic Per-
ceptual Auditory-event-based (Avent) Model, or SPAM. We
have preliminary results with the recognition of isolated dig-
its over the telephone that appears to support the notion of
increased acoustical robustness for such models, and have
run some preliminary perceptual experiments that also sug-
gest the existence of related mechanisms in human listen-
ers. We also have recently developed some related theory
(REMAP) that suggests how a SPAM-based system could
be trained to maximize the global posterior probabilities
for the correct models of an utterance (the MAP estimate)
[2]. This will minimize the probability of utterance error,
taking advantage of the perceptually-based assumptions of
SPAM.

2. THEORETICAL FRAMEWORK

We first define notation and basic terms:

¢ A set of avents (auditory events):

Q = {qo0,q1,---,9x }. This set is currently initialized
to correspond to truncated diphones; that is, phone
boundaries with the local region of the time series
associated with them. Given such an initialization,
the avents would be determined automatically in an
embedded Viterbi-based dynamic programming pro-
cedure (as is currently accomplished with phone-like
subword models).

Each gk, k = 1,..., K, represents an auditory event
on which recognition will be based. go represents a
non-avent or non-perceiving state.

e A sequence of acoustic vectors that is associated with
an utterance: X = {z1,%2,...,ZN}.
Ideally, these acoustic vectors should be chosen to
optimize detection.

o XPte ={Zn_d,...yTny -y Tnte)
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This is a a sub-sequence of acoustic vectors that is
local to the current vector z,, extending d frames
into the past and c frames into the future.

e An utterance model M; is then represented as a
sequence of avents with looped non-perceiving states
in between (see Figure 1).

e ¢" = avent perceived at time n.

e gF means that avent gx has been perceived at time
n.

The goal of recognition is to find the most probable word

or sentence j maximizing the a posteriori probability of
M; given the data (X), i.e,,

M; = ar%?a.x P(M;|X) (1)

In the discriminant HMM approach that is described in
[1], a local acoustic probability estimate is required, namely,

p@aflar a0t X) 2

foralln =1,..., N and all possible states g; (£=1,...,L)
making up M;. In the case of SPAM, these states are
avents.

A reasonable simplifying assumption would be to ignore the
dependence on states prior to the last perceived avent. In
this case, the time to the previous avent is the only sig-
nificant information concerning the intervening non-avent

states. Therefore, the avent sequence {ql“'_l1 , q;‘u’_zz, a4}
appearing in the conditional of (2) simplifies into
{g.™", am)} (3

in which n — A(n) corresponds to the previous time in-
dex for which an avent had been perceived, i.e., the last
time index n — A(n) for which a q:"A(") was perceived
with k& # 0. Note that this assumption is in principle less
unrealistic than the typical first-order conditional indepen-
dence assumption of HMMs, since the former implies only
that an avent is independent of any before the previous
one, which on the average might occur 100 ms before the
current avent. This is reminiscent of an approach pro-
posed in [9]. In that method, similar consecutive acous-
tic frames were dropped, leaving only the first frame and
the length of the dropped sequence as input variables for
the training and recognition process. The approaches differ
in that SPAM is a recognition model, and that the choice
to assign frames to “non-perceiving states” go (essentially,
which frames to drop) is based on a global criterion and
not on local decisions. However, both approaches empha-
size dynamic portions of the speech signal, incorporate im-
plicit duration modelling and remove correlation between
successive frames. These effects make the recognition pro-
cess more consistent with HMM assumptions. In [9], this
was shown to improve recognition performance.

Taking these assumptions into account, one can do SPAM
recognition based on the following local acoustic probabili-
ties, in order of decreasing complexity:

At e Ve=0,1,...,K
p(arlar ™, A(n), X329), { Vk=1,2,...,K } )
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If we assume that the probability of an avent is indepen-
dent of the previous avent, we can also use:

p(a?1A(n), X312), (5)
or, if we disregard the A(n):
p(a?1X775). (6)

During dynamic programming (or the REMAP procedure -
see [2]), these probabilities will have to be estimated for all
possible g; (according to the topology of the models) and
all possible A{n) (if used).

Estimation of (4)-(6) can be done, for instance, using
a Multi-layer Perceptron (MLP) trained with X2 at the
inputs, (complemented by inputs for A(n) for (5) as well
as q¢ 2™ for the case of (4) ) and K + 1 outputs, with
one output for go and the other K outputs associated with
the classes of avents. Alternatively one net can be used
to estimate avent class probabilities, and another to esti-
mate the probability of avent/non-avent. See [1] for related
approaches to MLP training for the case of phone-like units.

Figure 1 shows a SPAM consisting of three avents with
intervening non-perceiving states.

3. IMPROVED MAP ESTIMATION

As discussed in [1], training of transition-based models has
a number of inherent difficulties. This led us to develop
the theory for an approach to the training of local pos-
terior probability estimators that maximizes the estimate
of global posteriors for the correct models [2]. In this ap-
proach, we use a forward-backward-like recursion to gen-
erate targets for the local network that push the network
towards improved global discrimination. The simplest form
of this approach uses a local probability that incorporates
first-order dependence, namely p(q7|gp ~*, X2 ¥¢). However,
the technique can be generalized to dependence on M pre-
vious states, and it is shown in [2] that the approach can
further be used to train estimators of SPAM probabilities
such as (4).

Other than the general advantage of modifying local
training to maximize globally optimal criteria, this approach
removes (in principle) a number of practical difficulties with
SPAM training. In general, it is difficult to learn to uniquely
locate transition frames, since spectral transitions often oc-
cur over more than one frame. Furthermore, during recog-
nition we will consider all possible previous avents for ev-
ery input feature vector, while during training the previ-
ous avent will be assumed to be that which is given by the
word or phone level transcription for the training data. This
results in undertraining through a lack of negative exam-
ples. Both of these problems can be alleviated by training
with “soft” targets, so that all possible previous avents are
considered, even during training (since they will generally
have non-zero probabilities). If the soft targets represent
“better” estimates of the desired posterior probabilities,
then their use also implies a smooth transition over several
frames (in a probabilistic sense).
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Figure 1: A schematic of a three avent SPAM, with tied non-perceiving states separating the avents. This could be a model for a
two-phone word, for instance, with the go states corresponding to steady-state regions, and the g¢;, gj, and g states corresponding

to the three phonetic transitions.

4. EXPERIMENTS IN PROGRESS

Much work needs to be done before we can apply this theory
to a working speech recognition system, as we are proposing
a fairly radical departure from existing systems. However,
we are in the midst of two lines of experimental work.

4.1. Perceptual experiments

A series of preliminary perceptual experiments have been
performed in our laboratory, designed to ascertain the tem-
poral locations of the information-laden components of the
speech signal. These experiments are a direct outgrowth of
previous studies published by Furui {4] and Drullman et al.
[3]. Furui has shown for isolated Japanese consonant-vowel
syllables that the most significant perceptual information
is concentrated in regions associated with a large amount
of spectral change. Drullman et al. have demonstrated
that speech intelligibility of spoken sentences is dependent
on the integrity of slow temporal modulations (<8 Hz) in
critical-band-like channels of the speech envelope correlated
with syllable and phone segment boundaries. We have repli-
cated Furui’s and Drullman et al. 's results for naturally
spoken English sentences, and have extended Drullman’s
methodological paradigm to enable us to more precisely
pinpoint the locus of phonetically significant information in
the speech signal. We have accomplished this by bandpass-
filtering the temporal envelope modulations rather than us-
ing a low-pass filter. Qur preliminary informal listening re-
sults indicate that temporal modulations between 2 and 6
Hz are the most important for maintaining speech intelligi-
bilty, with intellibility approaching that of low-pass filtering
the speech envelope below 8 Hz. This 2-6 Hz bandpass is
similar to that used in RASTA [7], suggesting further con-
firmation of the auditory plausibility of this technique.

4.2. Machine classification experiments

In an initial recognition experiment we learned 44 types
of phonetic transitions that occur in a telephone database
of digits and two control words (yes and no). We trained
an MLP with 8400 frames that had been labeled (by a
phonetically-trained MLP) as being transitions, and also
trained a second network to distinguish between transi-
tions and non-transitions using an equal number of non-
transition frames from the same database. Using the prod-
uct of these two network outputs as an estimate of probabil-
ity p(g?|X21¢), where each g, is a state that might either be
an avent or a non-avent, we achieved the digit recognition
results (on 50 speakers not used in the training set) shown
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in Table 1. While the results are thus far not as good as
that achieved by a phone-based system with roughly the
same number of parameters, we note the following:

The SPAM system used a simple probability that did
not include dependence on the previous avent or on
the time between them (6); these characteristics may
be critical to the idea [9].

The phone-based system used automatically-generated
alignments that had been optimized for that system;
the SPAM system used the same alignments.

‘We still have some difficulty estimating the probabili-
ties of avent vs. non-avent. We are currently working
on improving the estimator’s performance.

The avent classification network had significant diffi-

culties learning onsets for two word-initial fricatives

(at the start of " three” and ”zero”). Inspection showed
that in at least some of these cases there was excep-

tionally low energy, and the avent-based system had

no silence class per se. This suggests to us that it

may be useful to distinguish between non-transition

speech and non-transition non-speech.

We have used on-or-off targets here, rather than the
REMAP-based soft targets that may be required for
a transition-based system.

Nonetheless, the initial SPAM implementation is able

to do 95% accurate speaker-independent telephone

digit recognition, and in the case of additive car noise,

does about the same as the phone-based system. Thus,
arelatively poor avent-based system (with three times
the error for clean speech) achieves the same error

level as a phone-based system in the case of severe

additive car noise. Note that this performance was

achieved with a recognition procedure that typically

only used around 4 “distances” from avent hypothe-

ses per word, as opposed to the roughly 50 or so

frames contained in the average word.

5. SUMMARY

In this paper we have described a new statistical approach
for speech recognition that is based on auditory perceptual
criteria. In particular, we are proposing to focus statisti-
cal modeling power on regions of significant change rather
than on relatively steady state regions, and to do so by us-
ing a single model to represent all possible stationary seg-
ments; discrimination is provided by modeling of categories
of major spectro-temporal changes. Pilot perceptual ex-
periments seem to be consistent with our view that certain



! || phones | SPAM |
Telephone digits 1.8 4.9
Added car noise (10 dB SNR) 35.1 34.3

Table 1: Recognition error in %. For 13-class isolated tele-
phone word task (digits plus yes and no). Results are on 50
speakers saying each word once, after training on 150 other
speakers also saying each word once. All trainings used
the “clean” data, and the MLP used for avent discrimina-
tion used roughly 10,000 parameters; an additional 10,000
parameters were used to discriminate between avents and
non-avents. The results suggest that the avents by them-
selves are sufficient to represent speech in noise as well as
the full phones.

ranges of spectral change are essential for the intelligibility
of speech. At the moment the avents can be thought of as
truncated diphones, but as our research develops we expect
our definition of these perceptually relevant regions to be
refined. Related work for the case of likelihoods (as opposed
to the posteriors of our model) can be found in a number
of sources, e.g., [5].

‘We have just begun to explore the consequences of this
hypothesis experimentally. Preliminary experiments with
isolated digits suggest robust properties for the case of ad-
ditive noise recorded in a moving automobile. This work is
the first effort on our part to pursue the goal of acoustically
robust recognition by modifying the fundamental statisti-
cal substrate, as opposed to merely improving the acoustical
feature extraction of the speech input.
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