MAGNITUDE SPECTRAL ESTIMATION VIA POISSON MOMENTS
WITH APPLICATION TO SPEECH RECOGNITION

Samel Celebi and Jose C. Principe

Computational Neuroengineering Lab. CSE 447, Univ. of Florida, Gainesville FL32611

Email: celebi@synapse.ee.ufl.edu, principe @synapse.ee.ufl.edu

ABSTRACT

We propose to use the Gamma filter as a continuous time
spectral feature extractor for the preprocessing of speech sig-
nals. The Gamma filter is a simple analog structure which
can be implemented as a cascade of identical first order low-
pass filters. The filter generates the Poisson moments of the
input signal at its taps. These moments carry spectral infor-
mation about the recent history of the input signal and in
return they can be used to construct a time-frequency repre-
sentation alternative to the conventional methods of short-
term Fourier transform, cepstrum, etc. The appeal of the pro-
posed method comes from the fact that in the analog domain
the Poisson moments are readily available as a continuous
time electrical signal and can be physically measured, rather
than computed offline by a digital computer. With this con-
venience, the speed of the discrete time processor following
the preprocessor is independent of the highest frequency of
the input signal, but is constrained by the stationarity interval
of the signal. The moments can be directly fed into artificial
neural networks (ANNs) for tasks like classification and
identification of timevarying signals like speech.

INTRODUCTION

The Gamma filter is a generalized feedforward structure
that is composed of a cascade of identical first order lowpass
filters. Up to now, this filter has found several application
areas in system identification, speech recognition and echo
cancellation [1][2]. In this study we show that the taps of the
Gamma filter carry valuable information about the frequency
spectrum of the input signal in the form of Poisson moments.
If the filter is implemented as an analog VLSI circuit, the
Poisson moments can be physically measured. This conve-
nience significantly lowers the computational cost. With the
inclusion of a forgetting factor in the filter, these moments
can be used to build a practical time-frequency representa-
tion in continuous time. Furthermore, they can be directly
fed into ANNs for tasks like classification and identification
of timevarying signals.
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GAMMA FILTER AND THE POISSON MOMENTS

Fairman and Shen [3] proposed that a distribution f(t)
can be expanded in terms of the derivatives of Dirac’s delta
function as follows

F0 = SHa)e T80 (-1 o)

i=0

fi(t,) is called the i Poisson Moment [4] of f(t) at t=t,. It is
given by

fi (1) =£(0) ®p; (D]
=1, (2)

P (0 = ~e™Mu(r)

A>0
il

*@’ stands for the convolution operator, while u(t) stands for
the unit step function. p;(t) can be recognized as the impulse
response of a cascade of i+1 identical lowpass filters. This
structure is known as the Gamma filter [1]. A is called the
time scale of the filter and it is responsible for adjusting the
region of support of the impulse response p;(t). Equation (2)
suggests that, instead of computing fi(t,) offline, one can
physically measure it as the value at the i+1% tap of a
Gamma filter with input f(t) (Figure 1). This low computa-
tional cost makes the moments appealing.

A: time scale
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Figure 1 Poisson moments are generated by the Gamma filter
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POISSON MOMENTS AND THE INPUT SIGNAL
SPECTRUM

Having seen how easily the Poisson moments can be
obtained let’s examine the relationship between the moments
and the input signal spectrum. Assume a causal signal f(t)
and expand (2) as

() = If(to—t) rect (

t—t,f2 L, f
3 e ﬁdt 3)

Next, introduce fy(t), the decaying exponential and rectan-
gular windowed version of the delayed and inverted f(t),
such that

) = [fu e @

Manipulating (3), it can be shown that the i™ Poisson
moment at time t,, is related to Fy(Q) as follows

1 df

- F
fit) = EEFW(Q)‘;_O fw (D) = Fp()(5)

As far as the magnitude spectrum goes (which is generally
the main concern in speech recognition) delay and time
inversion have no effect on the magnitude spectrum. The
decaying exponential windowing however helps to achieve
locality in time at the cost of blurring in the frequency
domain. There is also a rectangular windowing, but for t,>1/
A its effect can be safely ignored. Therefore, we can state
that [Fy(Q)! approximates the magnitude spectrum of the
recent history of the original signal f(t) with a frequency res-
olution A.

Having established the relationship between [Fy (Sl
and the magnitude spectrum of the original signal f(t), let’s
go back to (5). It is apparent from this equation that the it
Poisson moment of f(t) is the i™ Taylor’s series approxima-
tion coefficient of Fy(Q2) around Q=0. Using these coeffi-
cients a polynomial approximation of the magnitude
spectrum can be easily constructed. A similar argument can
be brought out for the Poisson moments, too. They can be
easily obtained by measuring the tap outputs of the Gamma
filter and can be used to form a vector that alone represents
the recent input signal spectrum. The moment vector can be
directly fed into an artificial neural network (ANN) for tasks
like prediction, identification and classification [2]{7][8].

PIECEWISE SPECTRAL APPROXIMATION

Evidently, the Poisson moments carry valuable informa-
tion about the blurred spectrum of the input signal in the
form of Taylor’s series coefficients at the pivot point Q=0.
Given the moments, construction of a Taylor series approxi-
mation of the spectrum becomes a trivial problem. One

shortcoming of the Taylor’s series expansion however, is its
locality, i.e. approximation diverges at points away from the
pivot. Hence, it is not possible to characterize a wide band-
width of frequencies using a finite number of Poisson
moments. As a cure for that shortcoming, one can partition
the frequencies of interest into several small bands and do
the approximations for each band seperately, thereby obtain-
ing piecewise representation of a wide bandwidth of fre-
quencies. In practice, bandpass filters tuned to different
center frequencies followed by mixers can be used to shift
each band to the origin. The baseband signals can be fed
into the Gamma filter to obtain the corresponding moment
vectors. Consequently, these moment vectors can be concat-
enated together to give the overall spectral picture (Figure
2).

Tracey and Principe [2] used a similar scheme in their sim-
ple word recognition task using artificial neural networks. A
group of constant Q bandpass filters were used to model the
cochlea [5]. The authors also replaced the mixer with a cas-
cade of a square device and an envelope detector, thereby
roughly approximating the power spectrum rather than the
magnitude spectrum. As described above the baseband sig-
nals were fed into Gamma filters, outputs of which are the
Poisson moments. These moments are further fed into an
ANN for word classification.

Approximate
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.:":Gamma
/- Filter

Figure 2 Spectral Approximation via Poisson moments
INTERPOLATION VIA POISSON MOMENTS

In this section we will give the form of an interpolating
polynomial that approximates the magnitude spectrum .
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Let’s partition the frequency axis into N bands whose lowest
cutoff frequencies are Q = {0,Q,, Q,,...,RQy_,} such
that the width of the j™ band will be Wj,-W;,;. Eventually,
we will have a moment vector

My = U (0) fiy (8 oSy jC)TT =01, N =1

Although the approximation of Fy/(£2) can be carried
out along all the frequency bands yielding a single, large
order polynomial, due to its simplicity we will prefer to do
the interpolation band by band yielding several small order
polynomials. Again, these piecewise approximations can be
put together to yield a global approximation.

Given two Poisson moment vectors Mj,M;,; that belong to
adjacent bands a polynomial Fapp(Q)
2K-1
F,, ()= a,Q
i 2 ©

T
AJ- = [aoj, Ayjs oo aZK_u]

can be constructed to approximate the j band. The coeffi-

cients of the polynomial are related to the Poisson moments
as follows

1M

A =G| e

M,

_ T
Gy = 18181 )50k

where the (n,m)® element of the matrix Aj is Qj(n+m)!/m!.
Coefficient vector A; is a linear weighted sum of the vectors
M; and M;,;. If an ANN is used to process the coefficients
Aj, the neural network can be made to leamn the weight
matrix C;!, too. With this convenience, the moments can be
directly fed into the ANN.

EXAMPLE

Figure 3 illustrates the magnitude spectrum of a 20 msec
segment of the vowel /e/ and its approximation obtained
using Poisson moments. The frequency axis was divided into
15 bands of 160 Hz each. Each band was shifted to the origin
and filtered by a Gamma filter of order 4, thereby creating
Poisson moment vectors of size 4. Poisson moments were
further used to approximate the original magnitude spec-
trum. The Poisson derived spectrum shows a better definition
of the pitch frequency, while showing the first two formants
equally well. For comparison purposes, we also included in
this figure the special case of the approximation where one
moment per band is used. This corresponds to the sampling
of the frequency axis. The improvement in the approxima-
tion gained by the utilization of additional Poisson moments

is obvious.
CONCLUSIONS

In this study we have shown how the Gamma filter can
be used to form a time-frequency representation of its input.
The representation is readily available at the taps of the
Gamma filter in the form of Poisson moments. Compared to
conventional spectral representation schemes like Fourier
series or cepstral coefficients, this is a computationally inex-
pensive method. The discrete time processor that operates
on the moments is not constrained by the Nyquist rate of the
input signal, but by the rate moments vary. The highest fre-
quency of the input signal affects the number of bands that
need to be implemented to cover the required bandwidth
with a given precision. In a sense, this method trades speed
for parallelism, since each frequency band operates totally
independent of the others. For spectral analysis of very high
frequency signals that can not be digitized with the present
technology, this method is very appealing. Analog VLSI
chips can be fabricated to implement the analog bandpass
filters and the Gamma structure, where the Poisson
moments will be measured.

One problem that needs to be addressed is the selection of
the time scale X. There are two conflicting factors in the
choice of the time scale A. [7] showed that in order to maxi-
mize the region of convergence of the approximation along
the frequency axis, A has to be as close as possible to zero.
With a small A, however, it is not possible to obtain time res-
olution. A can be made a positive number at the cost of using
more bands. In that respect A should be selected such that
the decaying exponential window will support the stationar-
ity duration of the signal.
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Figure 3 Original and the approximate spectra of vowel /¢/ obtained by

Poisson moments
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