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ABSTRACT

This paper presents a new pre-processing method developed with
the objective to represent relevant information of a signal with a
minimum number of parameters. The originality of this work is to
propose a new efficient pre-processing algorithm producing
acoustical vectors at a variable frame rate. The length of the
speech frames is no longer fixed a priori to a constant value but
results from a study of the signal stationarity. Both segmentation
and signal analysis are based on Malvar wavelets since the
orthogonal properties of this transform are the key to the problem
of comparing measures done on frames of different lengths.

1. INTRODUCTION

The objective we followed in this work was to represent pertinent
information of a signal with a minimum number of parameters.
The most efficient way to avoid redundancy in signal
representation is to perform the feature extraction on frames of
signals that may have a variable length. To obtain such a pre-
processing method, we proceed in two steps : the signal is first
analysed on a set of pre-defined fixed length segments. Then some
of these segments are merged to form an optimal segmentation in
the sense of the optimisation of an entropy criterion.

Signal analysis over variable frame lengths is performed using the
Malvar wavelets since the orthogonal properties of this transform
cope with the problem of measurement done on variable length
frames. »

This paper is subdivided into six sections. After this short
introduction, the second section introduces the Malvar wavelets
and their advantages against other spectral transforms. The third
section is divided into three parts. First we defines a new cepstrum
referred to as Malvar cepstrum, derived from section two and used
as feature vector in the recognition tasks. Second, we describe the
segmentation algorithm and some expected advantages of speech
recognition on variable length time-partition. And third, we depict
possible approaches for the feature extraction. The fourth section
presents some results of speech recognition based on this pre-
processing. Finally, we give some conclusions.

2. BASIC PRINCIPLES

The Discrete Fourier Transform is well suited for spectral analysis
of stationary signals since they can be decomposed in a canonical
way in a linear combination of waves. For non-stationary signals,
the DFT is not adapted at all because it gives only information on
the spectral components appearing in the signal without any
information on their temporal localisation. To avoid this weakness,
DFT has been adapted for quasi-stationary signals (i.e. statistical
properties are varying slowly with regard to observation period) to
have some temporal information on spectral components. This
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gave birth to the Short Time Fourier Transform (STFT). In the
STFT, the basis functions of the DFT are passed through a
window w(®) so that the basis functions are localised in time. It is
now possible to determine when a particular frequency is present
in the signal. On the other hand, frequencies composing the signal
can not be determined as precisely as in the DFT (incertitude
principle of Heisenberg). However, STFT constitutes a convenient
tool to observe signal spectrums along the time axis.

In a general way, the time-frequency wavelet transform consists in
decomposing the signal s(z) into a linear combination of time-
frequency units up(t). This time-frequency units are defined on
confined areas in the time-frequency plane. If we define such an
area as R=/[a,b/x[a,B/, the function up(t) must be contained in the
interval [a,b] for the time axis and in the interval [a,/ for the
frequency axis. The decomposition can be written as :

s(t)= Y ¢ ‘up, (/)
k=0
A suitable approach for the wavelet decomposition consists in
creating an optimised time-partition of the signal followed by a
standard trigonometric transform (Fourier, DCT, DST, ...) :
* The signal is split in segments using a shifted window w(2):

ot —p1)-s(e) 1=0%1,%2,... (2)
where b is the length of a segment

¢ The trigonometric transform (e.g. Fourier) gives:
Si(k)=[e ™ (e - b1)-s(t)-dt (3)

This expression is equivalent to the inner product of the signals(?)
and the so-called wavelets:

Uy =Mt —bl) (4)

This is the basic form of time-frequency wavelets. But this form
leads to strong algorithmic difficulties and F. Low and R. Balian
have proved [1] that, if w(¢) is sufficiently regular and localised in
time, the set of functions 4, ; will never provide an orthonormal
basis of £2(%). This means that it is not possible to find a set of
STFT basis functions uk_,(t) along the time axis that verifies
equations (1) and (4). Only the rectangular window without
overlapping regions eludes this demonstration.

A necessary condition to design orthonormal basis verifying
equation (1) is that the basis functions of one frame are orthogonal
not only to each other, but also to the functions in the surrounding
frames. There exist many sets of functions verifying (1) among
these : the system of Daubechies, Jaffard, Journé [1,2]. These
transforms consists in applying a DCT and a DST alternatively
coupled with an exponentially decreasing window. So doing, the
segmentation using very regular windows can lead to an
orthonormal basis of wavelets.
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Independently, Malvar developed a wavelet transform that also
avoids the problems encountered with STFT. The Malvar Wavelet
Transform consists in a non-redundant decomposition of any
signal (of any duration) in a linear combination of elementary
functions localised in time and frequency (eq. 1). The growing
popularity of the Malvar system lies in the efficient algorithm
developed in 1990 for computing the coefficients of the
decomposition [4, 5].

The definition of this transform is based on some very simple and
flexible constraints imposed in the choice of the window :

o(t)=0 rS-more23n

0< w(t)<land w(2r - 1) = w{r) (5)
wz(t)+w2(—t)=l if-n<t<n

An interesting advantage of these expressions is that they are very
easily generalised to varying length windows. On an arbitrary
time-partition [a;, ; +1)» we define the coefficients o; and a;, ;>0 so
that lj:aj +1747 - The role of the coefficients is to allow the
overlap of successive windows. The constraints proposed earlier

has been generalized by Coifman and Meyer [2] as:
0<w;()s1 VeeR
w;(t)=0 t<a;-ajortza;, vaj,
w;i{t)=1 a;+a;Sega;, -0, (6)
u)j_l(aj+t)=wj(aj—r)if|t].<_aj

wf(aj+t)+m§(aj—t)=lif|t|$aj

And the expressions of the Malvar wavelets can be written in the
two following forms:

a0 = [Froli el e te-a)| )
k=0,12,.and jeZ

or,
uj’k(t)= %-wj(t)-cosfll(t—aj) if jevenand £ =1,2,...

J
j‘k(t) = ‘/%-mj(t) if fevenand k =0 (8)

uj.k(t)=ﬁ-mj(1)-sin%(t -aj) if jodd and k =1,2,...

J
The functions ujk(t) form an orthonormal basis of L(R). The
general elementary wavelet is composed of an onset part, a
stationary part and a release part. It is possible to modulate this
three degrees of freedom via the parameters lj, o and Qjy) to
create an optimised basis.

_,__onset stationary release
g1 wj(!) W, g
: :
H i
[
T iji" - - aj 4+ n
D>
2a; 1j Zaj,y

fig. 1: definition of the overlapping window

Moreover, for each value of &, the expressions (7) or (8) represent
the impulse response of a FIR, so that the set of wavelets forms a
filter bank that covers the entire spectrum. As the representation of
the signal is obtained by projecting it on the orthonormal basis
(cje = (4 ,s)). the coefficients ¢, provide a local spectrum of
the signal and, due to the particular symmetry properties of this
transformation, represent it in a complete and non-redundant way.

3. SPEECH PROCESSING
3.1 The Malvar cepstrum

The properties of the Malvar analysis and more particularly, its
easy adaptation to variable length time-partition of any signal let
foresee some opportunity for the automatic segmeniation of the
speech signal. Therefore, it is necessary to adapt the speech
analysis to this segmentation in order to achieve coherent
measurements whatever the length of a segment is. We will take
advantage of the particular orthogonality properties of the Malvar
wavelets to adapt the speech analysis. Indeed, these properties
make comparable the measures achieved in the subspaces defined
by the orthonormal basis of wavelets [2]. Actually, we are
especially interested in fitting the feature extraction.

Since the coefficients of the Malvar Wavelet decomposition
provides a local spectrum of the signal, we can apply the definition
of the cepstrum to these coefficients and compute a Malvar

cepstrum to represent any frame.
DSTIV DST Cepstrum

The Malvar cepstrum is thus defined as :
FFT Ceptsrum

Speech

Samples

Fig. 2 : computation of the Malvar cepstrum

Results obtained with that kind of features will be presented later.

3.2 The segmentation algorithm

The speech signal is a non-stationary process, but it is assumed to
be "quasi-stationary”. That is, we can consider that over a short
period of time the statistical properties of speech features are
rather constant. Consequently, the feature extraction is usually
achieved on fixed length segments short enough to allow the
quasi-stationary assumption of the signal (about 10 ms). Actually,
the notion of stationarity evolves along the signal, the quasi-
stationary periods are longer in voiced speech than in unvoiced
speech. So, a better approach would consist in developing a
variable length segmentation of the signal into quasi-stationary
parts.

Some expected advantages of such a segmentation in the
framework of speech recognition task are :

* It seems that non-stationary parts are more important than
stationary parts in speech recognition. A segmentation into
variable length quasi-stationary units emphasise non-stationary
parts since the density of acoustical vectors is higher in non-
stationary parts than in stationary parts [6, 7].
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¢ Using a HMM recognizer, we can expect a better modelling of
state duration since the negative exponential form of the
probability to stay 4 times in the same state is inappropriate for
speech modelling especially for large values of 4.

* Using ANN recognizers, the segmentation will provide an
automatic and clever time-alignment of the speech signal.

The Malvar Wavelet decomposition can be used to obtain this
segmentation. The principle consists in computing an optimal
basis that maximises the information contained in the Malvar
coefficients. This is achieved by minimising a value called the
entropy which is defined by :

= <s,uk> s is the signal and u, are the wavelets.

H(s)= —%Ick F - 1oglee (9)

The algorithm that leads to the optimal segmentation is based on
the split & merge algorithm that consists in modifying a pre-
existing segmentation. The operation of suppressing some of the
existing points a;, i.e. concatenating the segments [a;;, a;] and
(a;, aj,4] to the segment [a;;, a;, ], is called merging. Inversely
the operation of inserting a point a; in an existing segmentation is
called splitting.

Now, let us see the effect of merging two segments on the
orthonormal basis. We know that the basis of segments [a;,a;)
and [aj,a;,;] span the subspaces Wj; and W;j. Since the
orthonormal basis are orthogonal to each other, merging the two
segments is equivalent to replacing the subspaces W, and W; by
their direct orthogonal sum. This is also equivalent to replace the
windows w;;(t) and w;(t) by a new window wj(t) defined as :

0 = whi(0 +w3(0)

The actual segmentation algorithm is described by the two
following steps :

* We create a set of fine-to-coarse dyadic time-partitions and,
for each partition, we compute the Malvar coefficients taking
care to adapt the window as suggested by the split and merge
algorithm. -

T {
Il;qd»l Ilq+l I§+l I?fl

fig. 3 : set of pre-defined dyadic segmentations

* The concatenation of two segments obeys to the following
entropy minimisation criterion :

5.8, if H(ag,') + H(a%jﬂ) < H(a;’.“)
1;“1 =13, 01}, otherwise (10)

q :level of segmentation
J :index of the segment

So doing, we obtain an adapted segmentation which, due to the
choice of an entropy criterion. leads to a time-partition of the
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signal into quasi-stationary units. Therefore, in case of speech
signal, the segmentation is related to the phonemic evolution of the
signal, that is, a sequel of short segments for unvoiced and
transient speech and some large segments for voiced speech.

The entropy can be interpreted as being a measure of the number
of significant coefficients of the decomposition. This can be
understood by analogy to entropy defined in Information Theory.
Information Theory defines the entropy as [8]:

h = Y p(x) logp(x;) (11)
i
where p(x;) is the probability density function of x

Entropy in this case represents the amount of information present
in the signal x. If p(x) is a uniform distribution, h is maximum. At
the opposite, if p(x;} =0 for all x; except x; and p(x;)=I, then
h=0 and x does not contain any information.

. - 2
In equation (9) coefficients lck[ play the same role as the

probabilities in (11). So we can interpret equation (10} in the same
way as equation (11) :

Equation (11) Equation (9)

. . . . . T
h is max. if p(x) is a uniform H is max. if |ck| are

distribution constant (flat spectrum)

H decreases when formants
appear in the signal

h decreases if p(x) strays from
uniform distribution

Table 1 : interpretation of the entropy

So, during stationary periods, since formants are added while noise
components are averaged. the entropy on a long segment is lower
than the sum of the entropies of the two small segments. On the
other side, during noise periods or transient parts, the averaging
effect will flatten the spectrum so that entropy of long segments is
higher than the sum of the entropies of the short segments.

Here are some examples of segmentation obtained with 4 levels of
segmentations from 64 to 512 samples.
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3.3 Feature extraction

The feature extraction must be adapted to the variable length
segmentation in order to emit only one acoustical vector by
segment. Much care has to be taken for this task not to make
illegal things. Indeed, for instance, due to differences in the form
of the windows, the measurements issued from a STFT (as LPC
cepstrum and FFT cepstrum) can not be compared between
segments of different lengths. A quite sure way to compute the
acoustical vectors consists in, first, achieving the feature extraction
on the finest level of segmentation and then calculating the mean
vector on the larger segments. Nevertheless, this trivial approach
does not take advantage from the fact that the selected sequel of
segments is optimal in terms of the information quantity contained
in the coefficients of the Malvar decomposition. Another way to
carry out the feature extraction consists in computing the vectors
in subspaces in which the measurements are comparable and
coherent whatever the length of a segment is. This is possible
using the Malvar cepstrum we defined in paragraph 3.1.

4. RESULTS

We have tested the pre-treatment proposed here in an isolated
word speech recognition task, on telephone line (53 English words,
190 speakers for the training set and 36 speakers for the test set).
The first results deal with the use of the Malvar cepstrum on fixed
length segmentation in order to verify if there is some sense to use
them in recognition task. The following resuits concern
comparison of speech recognition on variable length segmentation
first using discrete phoneme model HMMs, then using word model
HMMs.

Model 1 : 12 cepstra - phoneme models HMM

Model 2 : 12 cepstra - cms - phoneme models HMM

Model 3 : 12 cepstra, 12 A-cepstra, A-energy and
AA -energy, cms, word models HMM

LPC FFT Malvar | DCT Malvar
Cepstrum Cepstrum Cepstrum
model 1 67.64 % 59.82 % 58.29 %
model 2 76.44 % 79.58 % 77.07 %
model 3 94.31 % 94.03 % -

Table 2 - Recognition rates with Malvar cepstra

We can conclude from these experiments that the Malvar analysis
is well suited for speech processing. Note that the use of a classical
convolution noise suppressing technique (CMS [9]) results in a
very high improvement of the recognition rates.

(1 codebook + CMS)

without with
segmentation segmentation
Cepstra
(1 codebook + CMS) 81.61 % 871 %
Malvar FFT 84.02.% 6747

Table 3 - Recognition rates on variable length segmentation

In all the cases, the recognition rates were better without
segmentation. It seems that we used it badly with HMM. Maybe
because the HMM are well suited to model stationary parts while
we emphasise non-stationary parts. This weakness can be avoided
by using a segment based recognition algorithm instead of HMMs.

5. CONCLUSIONS

We have proposed in this paper a new pre-processing algorithm
for speech signals based on Malvar wavelets producing a new type
of acoustical vectors at a variable frame rate according to the
stationarity of the signal. Improvement was observed with the
Malvar cepstrum when noise compensation technique is
performed. This results seem to show that the Malvar cepstrum is
particularly suited for noise compensation. Moreover, our
algorithm present a big interest for recognizers that need some
time-alignment and that focus on transition parts like neural
networks.
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