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ABSTRACT

In this paper we provide a formal description of a speech
recognizer designed on the basis of elaborate articulatory
timing that is asynchronous across the multiple articula-
tory-feature dimensions. Three recently improved critical
components of the recogniser are described in detail. Eval-
uation results, obtained from a standard TIMIT phonetic
recognition task confined within the N-best rescoring sce-
nario, are reported on comparative performances between
the new feature-based recogniser and a recogniser using
the conventional context-dependent triphone units. The re-
sults demonstrate an overall superior quality of the rescored
N-best list from the feature-based recogniser over that from
the triphone-based recognizer. Greater performance im-
provements are observed as the top number of candidate
sentences increases.

1. INTRODUCTION

We have in the past several years pursued the development
of an articulatory feature based statistical framework and
of the related sub-phonemic units of speech for new speech
recognizer design [6, 5, 3. A main objective of the de-
velopment is to devise a parsimonious and parametric way
for modeling context-dependent behaviors in fluent speech.
One unique attribute of our new speech recognizer is its
exquisite and elaborate construction of a set of primitive
speech units at the feature (subphonemic) level. These units
were constructed from multi-dimensional articulatory fea-
tures overlapping across varying dimensions. Motivated by
the theory of distinctive features and by the principles from
the more recent articulatory phonology [1], our recogniser
demonstrated effectiveness in standard phonetic classifica-
tion and recognition tasks (TIMIT).

In all the previously published evaluation experiments,
the benchmark speech recogniser for comparison purposes
was a conventional HMM system using phonemes as the
primitive speech units. Context independent nature of the
phonemic units has made the performance comparison with
the feature-based system subject to criticism in that the
power of the latter system comes from its (elegant) ex-
ploitation of contextual information. The main purpose
of the paper is to report our recent results on performance
comparison between the feature-based system and a sys-
tem based on the conventional triphone units which rep-
resent context dependency spanning over several phonetic
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segments. Our evaluation task has been limited to only the
second-pass rescoring due to the computational complexity
in search with use of context-dependent feature units. In
addition to reporting the comparative evaluation results, we
also provide a formal description of recently improved key
components of the recognizer. In particular, we publish for
the first time a comprehensive set of feature spreading rules
over all five articulatory feature dimensions.

2. RECOGNIZER COMPONENT I: THE
PHONOLOGICAL/ARTICULATORY SPACE

Define a phonological space spanning over a total of M
dimensions., Following the theory of articulatory phonol-
ogy [1], each dimension in the phonological space can be
made associated with one distinct articulatory structure
(which we call articulatory feature). We assume that the
d** dimension, @y, is characterized by Ny distinct values:
©4 € {s},43,---,3,*}, each indexed by a segmental linguis-
tic unit of speech. One may think of the d** articulatory fea-
ture as being in one of Ny states. It is reasonable to assume
that the M individual features whose changes constitute the
state evolution process within the phonological/articulatory
space are independent of ecach other during specch produc-
tion. A first order Markov chain Aq4 = {x, afj} is employed
to represent the state evolution process in the d** dimen-
sion, where xf and a?,- are initial state occupation probabil-
ities and state transition probabilities of A4, respectively.
Since articulatory state sequences are hidden and the
acoustic observation is an integrated result of state occu-
pations in all articulatory dimensions, a composite Markov
chain A = {x;,a;;} with state space ® = 0; x 0, x
+=» X Ops is needed in order to characterize the relation-
ship between the phonological/articulatory process and the
acoustic observation. States in A are defined as s,

(af‘,s:’, ---,s“M“), where 45 € {1,2,--- , N4} is the index
to one of the Ny distinct values associated with the d** ar-

ticulatory feature. Under the independence assumption, we

have
M M
r-— xd. . a-.-— ad .
! II by 7 * II nin’
d=1 d=1

In our current implementation of the articulatory feature
based speech recognizer, five articulatory features (M=5)
are employed: three for major articulators (lip, tongue
blade and tongue dorsum) and two for secondary artic-
ulators (velum and larynx). The total number of dis-
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tinct values associated with each of the articulatory fea-
tures is 5, 7, 20, 2 and 3, respectively. For the major
articulatory features, context sensitive feature values are
used. The total number of all possible states in A is thus
(5-3)-(7-3)-(20-3)-2-3 = 113,400. (Factor 3 is due
to context semsitivity.) Fortunately, not all of these com-
posite articulatory states are reachable during speech pro-
duction. With the constraints of speech production and
knowledge of coarticulation, only a small subset of these
states are needed for characterising acoustic realization of
the phonological/articulatory process. In our current recog-
nizer, an articulatory state transition graph is dynamically
constructed for an arbitrary phonemic transcription of a
speech utterance. The total number of composite states in
our recognizger is 3,822,

8. RECOGNIZER COMPONENT II:
PHONEMIC TO ARTICULATORY-STATE
MAPPING

Let the phonemic transcription be f;, fa,:« -, fr for a speech
utterance. The transcription is given in the recogniser’s
training phase and is a hypothesis in the second-pass testing
phase given the N-best evaluation scenario. The process of
mapping phonemic representation to the articulatory states
involves the following steps: )

(1) Map each phoneme f; to a context-independent com-
posite articulatory state s; consisting of quintuple feature
values. A mapping table for all the TIMIT labels (quasi-
phonemes) can be found in [6]. Feature underspecification
is incorporated in this mapping.

(2) Create a triplet (s}, sf, s]) for each articulatory state
s; to characterize the coarticulatory effects from both left
(look-ahead) and right (articulators’ inertia) directions. sf
is the center state (context dependent if f; contains under-
specified feature(s)), and 2}, s7 take account of the left and
right contextual factors, respectively, for f;.

(a) The feature value in an articulatory feature di-
mension of s} is set to be the first specified one found
by searching to left s;_.;,s8:-2, -+, 3i—g, in that dimension.
R; = 3 is the search range implemented in our current rec-
ognizer.

(b) s7 is constructed in the same manner as s} except
that context searching is to the right and that the range of
the search is set to B, = 4. (Look-ahead coarticulation is
stronger than carry-over one in English.)

(¢) The feature value in each dimension of s is set
to that of s; if that feature of s; is specified; s§ inherits a
left or right adjacent phoneme’s specifiedfeature value if the
corresponding feature of s; is underspecified.

(8) Create articulatory state-transition graph G; for f;
in which a set of composite articulatory states are made to
realize transitions from s! to s§ and from s{ to s{.

(a) Apply articulatory feature spreading rules which
dictate what kinds of feature spreading need be prohibited.
A comprehensive set of such rules are summaried in Figure
1, where each sub-figure covers one manner class of English
sounds. A horizontal box which intrudes into the middle
column from left/right column represents a rule that fea-
ture spreading from the left/right context in that feature
dimension is possible. When feature spreading is prohib-
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ited according to the rules, the corresponding feature value
of s! or s] is simply replaced by that of s.

(b) Construct depth-zero state(s) in G;. If s! differs
from s{ by only one (or fewer) in the feature value among
the three major articulatory feature dimensions, s! will be
the only depth-zero state of G;. Otherwise, G; will contain
a set of depth-sero states, each of which inherits one major
and both secondary articulatory feature values from sf, and
inherits the remaining two major articulatory feature values
from s{. Define state depth p=0 for the depth-sero state(s).

(c) Increment p by one. For all states in depth p—1,
create all possible distinct states via replacing their fea-
ture values by the corresponding ones in s{. Each of such
replacements in each dimension will create one new state.
Set the depth of all newly created states to p.

(d) repeat step (c) until only s{ is created.

(e) Increment p by one. For all states in depth p—1,
create all possible distinct states via replacing their feature
values by the corresponding ones in s{. Remove any state
that differs from s{ in more than one feature values among
the three major articulatory dimensions. Set the depth of
all newly created states as p.

(f) repeat step (e¢) until no new state can be created
or until s} is reached.

(g) A link (state transition) is created from any
state of depth k — 1 to that of depth k if these two states
differ in only one of the five feature dimensions. Self loop
is also created for each state.

(h) If f; is a vowel, additional connections are cre-
ated that skip s§.

(4) Construct the composite articulatory state transition
graph for fi, f2,+-+, fr by combining G,,Ga2,---,Gr. K f;
and fi;+1 are both vowels or both consonants, G; and G,
are combined by linking s{ to the depth-sero state(s) of
Git1 and by linking the maximum-depth state(s) of G; to
3{,1. Otherwise, these two graphs are concatenated directly
by linking the maximum-depth state(s) of G; to the depth-
gero state(s) of Gi41.

4. RECOGNIZER COMPONENT III:
ARTICULATORY-STATE TO ACOUSTIC
MAPPING

For each composite articulatory state generated according
to the above steps from phonemic transcriptions in the
training corpus, a statistical distribution is used to cover
variabilities in the acoustic observations conditioned on the
state. On the other hand, the well-known phenomena of
many-to-one mapping from articulation to acoustics can be
accommodated via appropriately tying articulatory states
so that these states (representing distinct articulatory con-
figurations) nevertheless share the same distributional pa-
rameters that characterize speech acoustics.

In our current feature-based speech recognizer, all the
Markov states have clear physical interpretation in terms of
the underlying articulatory structures responsible for gen-
erating the acoustic observations. It is thus possible to
use different parametric forms in statistical distributions
to implement the acoustic mapping component of the rec-
ognizer. We have currently implemented both stationary
and nonstationary statistical distributions for the articula-



tory states marked by assimilated features in one or more
major articulatory feature dimension(s). Due to the compu-
tational difficulties encountered by the nonstationary ver-
sion of the system, the experimental results presented in
this paper are only from the stationary version, where the
state-conditioned acoustic output distribution is i.i.d. mix-
ture Gaussian densities.

lASPIM‘l'!W l

Figure 1. Articulatory Feature Spreading Rules

EXPERIMENTAL RESULTS

The feature-based speech recognizer described above has
been evaluated in an experiment for phonetic recognition of
standard 39 folded phone classes in continuous TIMIT sen-
tences. An N-best candidate list is provided for each test
utterance and the task is to re-order the candidate list ac-

5.

cording to the likelihoods computed from our feature-based -

speech recognizer. These N-best lists, as described in detail
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in [7], were generated in Cambridge University using HTK
[9]. The lists contain up to 30 candidate sentences (given
as phonetic strings) for each test utterance.

The model parameters in our feature-based speech rec-
ognizer are trained by performing 10 iterations of the seg-
mentational K-means training algorithm on 3,696 sentences
from 462 TIMIT recommended training speakers (SA sen-
tences are excluded in training). 3,822 articulatory states
are created to form state transition graphs for all train-
ing sentences. However, only 2,761 of them are made as-
sociated with acoustic observations; each of the remaining
1,061 states appears less than 4 times in the training cor-
pus. The acoustic observation of each state is modeled by
a mixture of 5 Gaussian densities. The covariance matrices
of all Gaussian densities with fewer than 15 training frames
are tied.

The state transition graph for a testing utterance may
contain unseen articulatory states which have not appeared
in the training corpus or have no acoustic observation data
associated with them. If an unseen state has another states
being in parallel with it, we simply remove it from the state
transition graph. Otherwise, a null transition is created to
skip this state.

The performance of the feature-based system is compared
with that of a system constructed using generalized tri-
phone models. Each generalised triphone is modeled by
a three-state, left-to-right HMM with no state skipping.
The middle state of the HMM is dependent only on the
center phoneme of the triphone and the left/right state is
dependent only on the left/right context of the triphone.
In addition, center phonemes of the triphones are tied into
39 classes, and left/right context phonemes are tied into 15
classes. In this way, only 1,209 states, ecach with a mixture
of 5 Gaussian densities, are used in the system. The 15
classes used for the merged contexts are obtained by modi-
fying similar classes published in {4] and in [8]. The param-
eters of the generalized triphone models are estimated using
the same training data and the same training algorithm as
those for the feature-based models.

The testing set consists of 48 randomly selected SX sen-
tences from 48 speakers (the selection process guarantees
that each region has four male speakers and two female
speakers). Table 1 and Table 2 gives detailed recogni-
tion performances for the feature-based and the generalized-
triphone-based systems. Table 3 gives the performances of
the worst and the best candidate sentences in the N-best
list (the original candidate order in the N-best list can not
be used to compare our results since that list was obtained
using a word lexicon and word-pair grammars). Figure 2
plots the correct recognition rates and recognition accura-
cies as a function of the top number of candidate sentences
among the 30 N-best ones for the two systems, respectively.

The above experimental results show that although the
improvement in performance on the top-one candidate sen-
tence of the feature-based system over that of the triphone-
based system is marginal, the overall quality of the rescored
N-best list from the feature-based system is clearly better
than that from the triphone-based system. Greater per-
formance improvements are observed as the top number of
candidate sentences increases.



No. Cand. Corr. Acc. Sub. Del. Ins

1 78.62% | 70.69% | 6.29% | 5.08% | 7.93%
5 81.72% | 74.47% | 3.38% | 4.89% | 7.25%
10 83.40% | 75.84% | 1.90% | 4.711% | 7.56%
15 83.58% | 76.21% | 1.40% | 4.96% | 7.43%

Table 1. Performance of the feature-based based system

No. Cand. Corr. Acc. Sub. Del. Ins.
1 77.57% | 70.82% | 7.22% | 5.20% | 6.75%
5 80.55% | 73.79% | 4.56% | 4.89% | 6.75%
10 81.47% | 74.35% | 3.75% | 4.77% | 7.13%
15 82.47% | 75.40% | 2.70% | 4.83% | 7.06%

Table 2. Performance of the triphone-based system

Choice Corr. Acc. Sub. Del. Ins

worst 67.16% | 50.99% | 26.70% | 6.13% | 16.17%

best 83.58% | 76.39% | 11.40% | 5.02% | 7.19%

Table 3. Worst and best performance in the N-best list

CofreCt recogniuon rares recognrion accurancies

E -0-0-0- feature-based system

-0-0-0- feature-based system
HXX- °d:'b€as°dsxyﬁem X-X-X- triphone-based system

Y% % & & 0 s 0 % » 3 »

Figure 2. System performances as a function of the top
number of candidate sentences.

6. SUMMARY AND DISCUSSIONS

In this paper, three key components of the articulatory fea-
ture based speech recognizer, which has been under develop-
ment in our research laboratory in recent years, are described
formally: the phonological/articulatory state space, the phone-
mic (discrete) to articulatory-state (discrete) mapping, and
the articulatory-state (discrete) to acoustic-stream (continuous)
mapping. The above first component stays essentially the same
as that presented in [6]. The above second component, as a main
focus of this paper, has been improved significantly recently over
that published in [6]. The above third component has also been
improved significantly over that published in [6] and has been
described in a much greater detail in [3, 2]. Moreover, the evalu-
ation results on the TIMIT phonetic recognition task presented
in this paper add further evidence for the effectiveness of the
articulatory-feature based approach demonstrated carlier in [6]
from a comparatively simpler phonetic classification task.

One conspicuous trait of our current feature-based approach
to speech recognition as described in this and our earlier pub-
lications is its unified treatment of phonological and articula-
tory (symbolized) representations of speech following the theory
of articulatory phonology (for an overview article of the the-
ory, sce [1]). This perhaps simplifies certain phonological reality
that would demand clear separation between the relatively higher
level phonological process and articulation at the lower phonetic
level. Another distinguishing quality of our approach is its rather
unelaborate and naive treatment of the relationship between the

articulatory representation of speech and its acoustic counter-
part. This much more complicated relationship in reality has
been functionally modeled in our current approach by a simple
mapping from the discrete-state Markov chain (i.e. articulatory-
state sequence) to the continuous-valued output observation in
the HMM. One inevitable consequenceresulting from the simplic-
ity of our approach on both of the above accounts is the need to
form Cartesian product, at least theoretically, in designing the
the articulatory-state space. At present, we use coarticulation
rules to control the size of the state space, enabling successful
construction of our current functional speech recogniser. It ap-
pears that the adoption of the highly simplified treatments of
both the phonology-to-articulation and articulation-to-acoustics
relationships, as exemplified in construction of the speech rec-
ognizer described in this paper, is an effective way to enable us
to design a functional, high-performance speech recogniser op-
erative on all classes of speech sounds that would be otherwise
impossible.
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