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ABSTRACT

In this study we implemented a speech recognizer based

on the integrated view, proposed first in [2], on the
speech pre-processing and speech modeling problems in
the recogniser design. The integrated model we devel-
oped generalizes the conventional, currently widely used
delta-parameter technique, which has been confined strictly
to the pre-processing domain only, in two significant ways.
First, the new model contains state-dependent weight-
ing functions responsible for transforming static speech
features into the dynamic ones in a slowly time-varying
manner. Second, novel maximum-likelihood and mini-
mum-classification-error based learning algorithms are de-
veloped for the model that allows joint optimiszation of the
state-dependent weighting functions and the remaining con-
ventional HMM parameters. The experimental results ob-
tained from a standard TIMIT phonetic classification task
provide preliminary evidence for the effectiveness of our
new, general approaches to the use of the dynamic char-
acteristics of speech spectra.

1. INTRODUCTION

During the past decade, use of the dynamic feature param-
eters associated with speech spectra has resulted in demon-
strable success in enhancing the performance of speech
recognition systems. In practically all these systems, how-
ever, the way in which the speech spectral dynamics is rep-
resented has been as naive as simply taking the differences
of or taking other experimentally chosen combinations of
the “static” feature parameters. This representation has
been confined strictly within the speech preprocessing do-
main in the speech recognizer design.

The objective of the research reported in this paper is to
generalize the already successful, despite its empirical na-
ture, delta-cepstrum technique such that the design of the
dynamic features of speech is gracefully integrated into the
overall speech recogniser design including optimization of
the speech model parameters. Although the basic princi-
ple guiding our research is sufficiently general and can be
applied to all types of speech recognizers, we restrict our
presentation to only the recognizer based on hidden Markov
model (HMM) representation of the speech spectra/cepstra.
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A STATISTICAL MODEL OF SPEECH
INCORPORATING GENERALIZED
DYNAMIC FEATURE PARAMETERS

The statistical model, called the integrated HMM, which
incorporates generalised dynamic speech features described
in this paper is an extension of the model from the earlier
unimodal Gaussian version of the integrated HMM [2] to
the current Gaussian mizture version. This statistical model
integrates the dynamic features that belong traditionally to
the preprocessing domain into the speech modeling process.
The integration is accomplished by defining a set of HMM-
state-dependent weighting functions, which serve the role
of converting the static features to the dynamic ones in a
time-varying manner, as a set of intrinsic parameters of the
model that can be learned from the speech data.

Let X = {X', X%,..., X"} denote a set of L static-feature
(vector) sequences (i.e., L variable-length tokens), and let
X = {X, x5, X;.,} denote the [-th sequence having the
length of 7' frames. The dynamic feature vector Y} at
time frame ¢ is defined as a linear combination of the static
features stretching over the interval f frames forward and b
frames backward according to

2.
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where wi i m is the kth weighting coefficient associated with
the mth mixture residing in the Markov state 1.

A finite mixture Gaussian density associated with each
integrated HMM state i (a total of N states) assumes the
form

M

D cimbism (X Ybi,m (V1)

m=1

5(0)) = bi(x, ¥ (2)

where M is the number of mixture components, and c;m,
is the mixture weight for the mth mixture in state . In
eqn.(2), bi,m(X:) and b; m():) are d-dimensional unimodal

Gaussian densities.

8. THE TRAINING ALGORITHMS

In this paper, we report two distinct approaches to the
training of the parameters of the integrated HMM. The fixst
approach, based on the maximum-likelihood (ML) princi-
ple, has been described in [2] in detail and will not be given
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here. This section is thus concentrated on the training al-
gorithm developed using the minimum-classification-error
(MCE) approach.

Consider L variable-length training tokens, with each to-
ken consisting of a vector-valued augmented data sequence
(I-th token):

o = {&, ¥} = {0, (X, X5), - (Xp, V)b

where the dynamic portion (y ) of the data sequence is
related to the static one (X') in a state-dependent manner
according to Eqn.1.

In the supennsed trmmng mode which we assume, each
training token (XT.,J’T.) is known to belong to one of X
classes {C?})<,. The goal of the MCE training is to find
the classifier parameter set, denoted by & = {Q’ }<1, such
that the probability of misclassifying any O} is minimised
and the resulting ® gives the optimal solution of the clas-
sifier. In the integrated HMM, the classifier parameter
set consists of all the state-dependent, mixture-dependent
weighting functions wi,i,m, together with the conventional
HMM parameters (including Markov transition probabili-
ties a;j, mixture weights ¢; m, mixture Gaussian mean vec-
tors (fie,i,m, fby,i,m), and mixture Gaussian covariance ma-
trices (Lo,i,m) Dy,i,m)), for all the models each representing
a distinctive class of the speech sounds to be classified.

3.1. The MCE Optimization Criterion

The first step in the formulation of the objective function

is to choose an appropriate discriminant function ge(O', &)

according to the following decision rule for classification:
C(0') = C*, if g(0', &) = mex 9;i(0',®) (3)

where C(.) is the class associated with the test data ©* as

determined by the classifier.

In our implementation of the integrated HMM, we choose
the most likely (optimal) state path traversing the Markov
model as the basis for defining the discriminant function.
The log-likelihood score of the input utterance O' along

the optimal state sequence ©" = {67,05-+-,07,} for the
model associated with the xth class " can be written as

9:(0',8) = log P(O',0"|2")
= 1ogP(o'|e" 2") + log P(©"|8")
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Elog bgn(O.) + E logaerer,, (4)

where bsx (O}) is the probability of generating the feature

vector O! at time t in state 87 by the model for class «th,
is the transition probability of the xth model, and

T! is the number of frames of the [th observation sequence.
Given a discriminant function, a misclassification mea-

sure for an input training utterance ©' from class x can be

defined as follows to quantify the classification behavior:

agnen
LR

1
"
de(0',8) = —gx(0*,8) +log [76-1—_1 § :elj(O'.i)v,]

i#x

where 7 is a positive number and X is the total number
of classes. d,‘(O &) above is a quantity that indicates the
degree of confusion between the correct class and the other
competing classes for a given input utterance O'. When ¢
approaches 0o, the misclassification measure becomes

d(0',8) = —g.(0", %)+ z’;;a‘xg,'(ol,‘i)

= —gu(0,®) + 0:(O', &), (5)

with C* being the most confusable class. Clearly, a posi-
tive value of d.(O', Q) indicates a misclassification and a
negative value of d.(O', ®) implies a correct decision.

Given a misclassification measure, we further define a
smoothed loss function for each class «:

1

L =
‘rn(o )Q) - 1 +e—pd.(0‘.§)'

p>0 (6)

which approximates the classification error count. That is,
the loss function assigns near-gero penalty when an input is
correctly classified and assigns a near-unity penalty when
an input is misclassified. The parameter p controls the slope
of the above smoothed zero-one function.

Finally, given a loss function defined for each class, we
define the overall loss function for the entire classifier as

N _
T(0,8) = D T.(0',8)5[0' € C"] (1)

n=1

where §[¢] is the Kronecker indicator function of a logic
expression ¢ that gives value 1 if the value of £ is true and
value 0 otherwise.

3.2, Gradient Computation

In the MCE discriminative training, the integrated HMM
parameters are adaptively adjusted to reduce the overall
loss function along a gradient descent direction. The fol-
lowing gradient equations are obtained by computing the
partial derivatives of T(O', &) with respect to each inte-
grated HMM parameter for a given training token O be-
longing to class «:

g% = _%:e%%)%m"(]) im0 By hm() X
%‘—“’-,,%; = % .;;’)7'-"‘-'(1)2 b m(Dheim ()
3—5—"—’—‘,,(% = ¥ ';%’)m.mz(a)z,...m(j)A,.;.m(j)
%% Z%) Yim ()1 = cim(G)s

where the set T} (j) includes all the time indices such that
the state index of the state sequence at time t belongs to
state ith in the Markov chain, i.e.

T = {dei=1}

1<i<N, 1<t<T
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Other quantities in the above equations are

—pY (O}, B)[1 — TL(O, )] ' if j=x«
¥i =\ pT.(0', @)1 - r,&o‘,{»)]-zi’;"‘-’;;‘?:—’,'—;) if G4k
Asim () Xe = pajim(d) (8)
Ayim(3) = Y= piyim(j) and
o Cim ()b m (X)) (VD)
"h.m.t(])

b(0%)

Note in the above that ¥; of eqn. (8) serves as adaptive
step sise of parameter adjustment. It can be seen from eqn.
(8) that a substantial parameter adjustment is made when
the absolute value of d.(©", &) is small — that is, when the
training token is likely to be misclassified. On the other
hand, when the absolute value of d. is large, that is, when
the input token is either unlikely to cause confusion or ob-
viously an extreme outlier, then the amount of adjustment
is accordingly reduced.

4. EXPERIMENTS

4.1. Task and corpus

The experiments described in this section are aimed at clas-
sifying the 61 quasi-phonemic labels defined in the TIMIT
database. In keeping with the convention adopted by the
speech recognition community, we folded 22 phone labels
into the remaining 39 ones in determining classification ac-
curacy. ’

The training set consists of 442 speakers, of both male
and female, resulting in 3536 sentences from a training sub-
set of the TIMIT database. The test set consists of 160
sentences (a total of 5775 phone tokens), spoken from 20
speakers completely disjoint from the training set.

4.2. Computation of the static speech features

The raw speech data in TIMIT was in the form of wave-
forms. The following is the analysis condition under which
the static speech features are computed:

Frame size : 10 msec (160 samples)

Window type : Hanning (modified Hamming)

Window length : 32 msec (512 samples)

Features : Mel-frequency cepstrum coefficients (MFCC)

For the computation of MFCC, 25 triangular band pass
filters are simulated, spaced linearly from 0 to 1 kHz and
exponentially from 1 kHsz to 8.86 kHsz, with the adjacent
filters overlapped in the frequency range by 50%. The FFT
power spectrum points are combined using a weighted sum
to simulate the output of the triangular filter. The MFCC
(static features) are then computed according to

25
MFCC(p) = 3.5, cos (p x [r - 0.5] x -2’-'5-) ,0<p<T
r=1

where S, is the log-energy output of the rth mel-filter. An
eight-component static feature vector is extracted every 10
msec throughout the signal. For the integrated HMM, only

the static feature vectors are used as the raw data to the
recogniger, which constructs the dynamic feature parame-
ters internally within the recognizer.

4.3. Experimental Setup and Results

The main goal of the experiments designed in this study
is to investigate the relative effectiveness of the generalized
dynamic-parameter technique in comparison with the con-
ventional one. Therefore, we have attempted to keep all
other aspects of the speech models associated with both
the conventional and the generalised techniques as much in
common as possible, and to keep the recogniser structure
as simple as possible. For both the integrated HMM and its
benchmark counterpart (i.e. the conventional HMM using
the pre-processor that appends the delta feature vectors into
the static ones), each phone is represented by a three-state,
left-to-right HMM with no skips. The covariance matrices
in all the states of all the models are diagonal and are not
tied.

For the ML approach, we have implemented three types of
the integrated HMM according to the different constraints
imposed on the state-dependent weights that define the gen-
eralizsed dynamic parameters. These three constraints are:
“Relaxed” Constraint (RC), Linear Constraint (LC), and
Nonlinear Constraint (NC) (see [2] for detail). For the MCE
approach, the three types of the integrated HMM we have
implemented differ from each other according to the three
different ways of using initial model parameters before the
MCE training takes place. These three initial model param-
eters were directly taken from the integrated HMMs trained
by the ML criterion with RC, LC, and NC constraints.

Further, for all versions of the integrated HMM and the
benchmark HMM, we have explored both context indepen-
dent and the context dependent versions of the phonetic
model. For the context independent version, a total of 39
models (39 x3 = 117 states) were constructed, one for
each of the 39 classes intended for the classification task.
For the context dependent version, a total of 1209 states
were constructed, with each three-state combination out of
these states representing one allophone conditioned on pre-
defined merged phonetic classes as left and right contexts
(i.e. generalized triphone). These pre-defined merged pho-
netic classes (15 in total) were modified from the merged
classes published in [4] and in [3].

The phonetic classification results are obtained to show
dependence of the classification rate on a variety of factors
including the nature of the dynamic-parameter constraints
used to construct (in the case of ML training) or to ini-
tialize (in the case of MCE training) the integrated HMM,
the number of Gaussian mixtures in the HMM state, and
the context dependence/independence in the classification
task. The results shown in Table 1 are obtained using the
ML training. First, use of five mixtures in the HMM states
produces significantly better results, uniformly across all
four types of the speech models (both context dependent
and context independent ones), than use of the unimodal
Gaussian HMM. Second, compared with context indepen-
dent models, use of context dependent models typically re-
duces the classification errors by about 40%, independent of
other factors. Third, among all four types of the model eval-
uated, the NC version of the integrated HMM performs bet-
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Type Context-Ind Context-Dept
of Rate Rate
Model 1 Mix 5 Mixs | 1 Mix 5 Mixs
Benchmark | 58.28% | 62.41% | 74.18% | 76.98%
RC-IHMM | 58.24% | 62.84% | 74.79% | 17.14 %
LC-IHMM 50.48% | 53.58% | 71.73% | 73.20%
NC-IHMM 58.79% | 63.36% | 75.79% | 78.58%

Table 1. TIMIT 39-phone context independent (left) and con-
text dependent (right) classification rate using ML training.

ter than any of the remaining. Fourth, the superior perfor-
mance achieved by the NC version of the integrated HMM
is more significant for the context-dependent experiment
than for the context-independent one, and more significant
when five mixtures are used. The error rate reduction with
use of the NC version of the integrated HMM is 7.0% rela-
tive to the benchmark HMM. Finally, the LC version of the
integrated HMM produces more classification errors than
any other model types evaluated, including the benchmark
HMM.

The phonetic classification results shown in Table 2 are
obtained using the MCE training. We observe from Table
2 that for both the context dependent and context inde-
pendent classification tasks, the integrated HMM initial-
ized by the ML-trained model with nonlinear constraint
(last row, NC-Initial) is superior to the integrated HMM
initialized otherwise and to the benchmark HMM. The
best classification rate, 81.45%, achieved with use of the
context-dependent integrated HMM trained by the MCE
criterion starting from the nonlinear-consiraint ML version
of the integrated HMM, represents a 7.1% error rate re-
duction compared with the benchmark HMM (80.04%). It
also represents a 13.4% error rate reduction compared with
the same version of the integrated HMM except with only
the ML training (78.58%, see Table 1). In general, mov-
ing from the ML training to the MCE training, we are
able to achieve a classification error rate reduction rang-
ing from 10% to 25% for the integrated HMM as well as for
the benchmark HMM. To the best of our knowledge, even
for the benchmark HMM (i.e. the same HMM evaluated
in [1]), the results we report in the present study are the
first demonstrating the effectiveness of the MCE training
for the standard TIMIT 39-phone classification task. We
also note from Table 2 the guantified superiority in perfor-
mance of the context-dependent models over the context-
independent ones, and of the five-mixture models over the
unimodal Gaussian models, for both the benchmark models
and the integrated models.

5. SUMMARY AND CONCLUSION

In comparison with the conventional technique exploring
the dynamic features, our new, generalised dynamic-feature
technique is based on a solid theoretical ground. Within
the theoretical framework described in this paper, use of
dynamic features of speech is automatically integrated as
a sub-component of the overall speech modeling strategy,
rather than being treated as just a narrow signal process-
ing problem. Specifically, the new integrated HMM gener-

Type Context-Ind Context-Dep

of Rate Rate

Model 1 Mix 5 Mixs | 1 Mix 5 Mixs
Benchmark | 63.19% | 67.19% | 78.94% | 80.04%
RC-Tnitial | 64.25% | 67.46% | 79.64% | 79.88% |
LC-Initial | 56.95% | 58.74% | T4.25% | 76.45%
NC-Initial | 64.59% | 68.23% | 79.81% | 81.45%

Table 2. TIMIT 39-phone context independent and context
dependent classification rate using MCE training.

alises the currently widely used dynamic-parameter (delta-
cepstrum) technique in two ways. First, the model contains
state-dependent weighting functions for transforming static
speech features into the dynamic ones, instead of having the
weights be pre-fixed by the pre-processor. Second, the the-
oretically motivated EM-like algorithm and the MCE pro-
cedure are developed for the integrated HMM that allows
joint optimization of the state-dependent weighting func-
tions and the remaining conventional HMM parameters.
Starting from the original proposal for the integrated
HMM [2], we find that moving from the ML training to
the MCE training is particularly desirable. With the con-
ventional HMM, the sole motivation for the use of the MCE
training in place of the ML one is from the general consid-
eration of minimising error rate due to poor approximation
of the HMM as a source model to true statistical charac-
teristics of the speech process. While the same motivation
applies to the integrated HMM, the MCE approach auto-
matically eliminates the need for use of unrealistic and ar-
tificial constraints that are essential for the formulation of
the integrated HMM based on the ML design philosophy.
The constraints have been on the state-dependent weighting
functions in the definition of the generalized dynamic pa-
rameters. Elimination of these constraints by moving away
from the ML approach appeazs to be a significant contribut-
ing factor for the improvement of the classifier performance
from the best classification rate of 78.58% obtained by the
ML approach to that of 81.45% by the MCE approach.
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