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ABSTRACT

Trace-segmentation (TS) is a method for non-linear time-
normalization of a sequence of speech representation frames
prior to recognition of the sequence. Numerous attempts to
perform speech recognition using trace-segmentation have been
made in the past but these attempts have failed to provide the
same performance as DTW of HMM recognition. The reason
for this failure may be due to the use of inappropriate distance
metrics to perform the segmentation or the use of an
inappropriate spatial sampling interval along the trace. This
paper describes an investigation into these problems, in which
the appropriate Nyquist sample rate of the spatial trace is
determined by analyzing the frequency of the temporal
variation of the speech frames. It is also shown that separate
segmentation of the trajectory described by each individual
coefficient in the speech frame leads to much improved
recognition which exceeds the performance provided by DTW
recognition of the same database.

1. INTRODUCTION

One of the outstanding problems of speech recognition is how
to deal with the temporal variability of speech. Conventionally,
temporal variability is handled by the use of dynamic time
warping (DTW) or hidden Markov models (HMM). These
techniques work surprisingly well even though the implicit
speech production model used in DTW and HMM may have
little connection with real speech.

However, it is often suggested that the speech production
models used in HMMs are not representative of real speech
production and artificial neural net (ANN) techniques have
been widely trailed as an alternative. Thus far, the performance
of ANN based recognition compares unfavorably with HMM
based recognition. One problem is that feedforward ANNs
such as the multi-layer perceptron (MLP) have a fixed
dimensionality input field to which the variable number of
speech frames in an utterance must somehow be sensibly
applied.

A number of approaches have been adopted to solve this
problem. The first is to introduce time delays between layers in
feed forward networks so that the frames in an utterance can be
applied separately in sequence to the input of the network [1].
The presence of the time delays ensures that information about
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previous frames is retained in the network so that the current
outputs of units within the network are fed back to the inputs
of units in previous layers. This recurrent architecture retains
some information about all previous inputs rather than just a
few as in the feedforward TDNN. However, the choice of
recurrent architectures is enormous and learning often proves
unreliable [2].

Another approach which can be used when recognizing
isolated utterances is to perform linear time normalization of
the utterance. This means that a small constant number of
frames are selected from the original frame sequence
representing the utterance. The selected frames are chosen to
be at approximately uniform time intervals regardless of the
time length of the utterance. The selected frames are then
concatenated into a single vector of fixed dimensionality which
can be applied as an input to a conventional feedforward neural
net or conventional pattern classifier [3]. In spite of its crudity,
this approach works well on isolated words but is inferior to
HMM or DTW classification because no attempt is made to
model the time variability in the utterance.

Finally, time variability can be accommodated by the
technique of trace-segmentation (TS) which is sometimes
called variable frame rate coding. The idea behind TS is that
the sequence of frames representing an utterance describe a
trace or trajectory through a space whose dimensions are the
dimensions of the frame vector. It is proposed that the shape of
the trace is characteristic of the utterance and that the shape
should therefore be encoded as a vector of fixed dimensionality
which can be applied to a feedforward ANN or conventional
pattern classifier. A possible encoding of the trace shape is to
concatenate the series of vectors at a number of uniformly
spaced points along the trace and the process of selecting the
spatially equidistant points along the trace is called trace-
segmentation.

This approach has been explored by many workers in the
field [4], [5], but has not led to better performance than
obtained by linear time normalization. 1t is believed that this
may be due the use of an unsuitable distance metric to segment
the trace or because the Nyquist sample rate criterion is being
violated in choosing the spatially equidistant samples along the
trace. This paper examines both these possibilities and
determines the appropriate sample rate for each coefficient in
the speech frame. It is also shows that the trace-segmentation
process is much more successful when applied to each frame
coefficient individually, rather that the frame as a whole. The
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latter approach is called Individual Trace-Segmentation (ITS)
and it will be shown that used in conjunction with a k-nearest
neighbor classifier, it provides significantly better performance
than simple trace-segmentation or DTW on a highly confusable
vocabulary.

Although the rationale for investigating trace-segmentation is
to generate a fixed dimensionality representation of an
utterance which can be classified by a feedforward ANN, this
paper demonstrates the properties of the trace-segmentation
algorithms in conjunction with a k-nearest neighbor classifier
as it is believed that the use of an ANN would add an
unnecessary uncertainty to the results.

2. SIMPLE TRACE-SEGMENTATION (TS) AND THE
ITS ALGORITHM

Consider an utterance u represented by a sequence of m N-
dimensional speech frames (v;‘,vg,...,v;) taken at
uniform intervals of time. These vectors are non uniformly

spaced points on a curved trace through the N-dimensional
space. The process of simple trace-segmentation (TS) involves

division of the total spatial length, Lt, of the trace into
n, equal length segments and definition of the beginning and

end of each segment by an appropriate N-dimensional vector.
The concatenation of these vectors is then used as an encoding
of the shape of the trace. The beginning and end segments
vectors are usually made equal to the spatially nearest vector,
u
i
required, the segment vectors can be estimated by linearly
interpolating between the two nearest speech vectors,
VT and V;x +1>
boundary. The TS algorithm can be summarized as follows:

V. in the original speech sequence. If greater accuracy is

which lie on either side of the segment

1) Estimate the total spatial length, Lt- of the trace. This is

done by summing the distances between the m successive
vectors in the original speech sequence.

L= ‘le—:lld(vi’viﬂ) ey
i=
where
47,90 = (CO-Va)D'? @
=
The length of each spatial segment is then:
L,=L,/n, 3)

ii) Find the two vectors in the original speech sequence which

lie on either side of the i'h segment boundary. This is done by
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finding the value of j for which the following inequalities are
true:

J

Zd(v:,v:“) >1.L, (4a)
k=1
j1
Zd(v:,viﬂ) <iL, (4b)
k=1

1ii) Linearly interpolate between V}l and V}’+l to find the

segment boundary vector t;’

u

ti =vj + (Vi —v))a (5)

where CLis given by:
j=1
: u u
iL, - Z d(vy, Vi)
k=1

a= — 6)
d(vj ’Vj+l)

The ITS algorithm applies the original trace segmentation
strategy of linear interpolation in a N-dimensional space to a
one-dimensional space. The ITS algorithm is the same as the
TS algorithm except that it must be applied N times, i.e. one
for each component of N-dimensional vector of features, and
(2) becomes

- = u u
d(¥i, Vi) =|Vi —Viu )

3. THE SPEECH DATABASE

All the analysis and experimental work described in this
paper was based on a subset of the Connex Alphabet Database
(binary version 0.1) from British Telecom Labs. This speech
consists of three examples of each of the letters of the alphabet
uttered by a total of 104 speakers. The speech was recorded in
a silence cabinet through a high quality handset, digitally
sampled at 20 KHz using a 16 bits A/D. The subset chosen for
the trace-segmentation work consisted of 6 letters - B, P, M, R,
S and T. Fifty two speakers have been designated training
talkers and other fifty two for testing.

The time domains samples were converted to eight
dimensional MFCC frames at a one millisecond rate. This
unusually high frame sample rate was chosen to ensure that
none of the coefficients in the frame were undersampled. This
is important since one of the objectives of the work was to find
the appropriate Nyquist rate for each coefficient and this could
not be done if aliasing had already been produced by producing
the frames too low rate.



4. FINDING THE FREQUENCY VARIATION OF THE
MFCCs

An initial investigation into the frequency variation of each
of the coefficients in the speech frame was made to ensure that
any failure in the performance of the trace-segmentation
algorithm could not be attributed to undersampling of the
speech representation. The investigation was done by
evaluating the power spectral density function for the
waveform described by each coefficient in the sequence of
speech frames for each ufterance in the database. These
functions were averaged over the entire set of utterances to
provide a picture of the magnitude of the different frequencies
of variation of each of the coefficients in the speech frame
representation.

The average functions for each of the eight MFCCs in the
speech frames are presented in Table 1. It can be seen that the
maximutn significant frequency of variation in any coefficient
is lesser than 100 Hz. This coincides with the common
assumption that articulation frequencies are limited to 100 Hz,
and thus that the sample rate for the speech frames should no
be less than 5ms - 10 ms.

3 dB frequency Maximum

Coefficient (2 Hz) Significant

Frequency

(+5Hz)

Co 28 95
C1 17 53
C2 16 78
C3 7 46
C4 7 52
C5 12 58
Cé6 10 95
c7 13 90
C8 10 87

Table 1: 3 dB and maximum significant frequency (Hz) of each
MFC coefficient

5. RECOGNITION EXPERIMENTS USING THE TS
AND ITS ALGORITHMS

The usefulness of the TS and ITS algorithms were accessed
by conducting recognition experiments with a k-nearest
neighbor classifier in conjunction with a number of pre-
computed class template patterns. For both the TS and ITS
experiments, ten templates per class were generated using the
Modified k-Means Clustering Algorithm [6]. Classification
was then attempted using the k-nearest classifier with a
number of different k values.

The first experiment was applied to the TS algorithm to
determine the appropriate number of spatial segments which
should be used. Recognition was attempted using 20, 40, 100
and 200 segments per utterance in conjunction with a k-nearest
neighbor classifier using k values of 1 and 2. The resuits
presented in Table 2 show that the best number of segments is
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20, with performance deteriorating as the number of segments
is increased. The performance obtainable using DTW
recognition of the same data at 1 ms frame rate is shown for
comparison.

Having determined that 20 segments provided best
performance with the TS algorithm, a comparison was made
between the TS and ITS algorithms using an extended range of
k-nearest neighbor classifiers. Table 3 presents the recognition
results of the speech recognition experiment for TS and ITS for
ten values of the parameter k of the k-nearest neighbor
classifier. It is evident that ITS is greatly superior to the simple
trace segmentation algorithm, and is significantly better than
DTW for all the tested k values.

K average mode
1 71.1 TS 20
1 68.5 TS 40
1 68.9 TS 100
1 67.2 TS 200
1 73.3 DTW
2 72.1 TS 20
2 66.2 TS 40
2 66.6 TS 100
2 67.2 TS 200
2 72.5 DTW

Table 2: Recognition performance using the TS algorithm with
various numbers of segments per utterance

Type of TS ITS DTW
Recognition

k=1 71.1 76.7 73.2
k=2 72.1 773 73.2
k=3 68.2 80.3 77.1.
k=4 68.4 79.7 76.8
k=5 60.9 79.1 77.1
k=6 58.6 78.7 78.7
k=7 58.2 78.1 78.4
k=8 56.6 77.5 76.4
k=9 - 53.0 76.8 74.8
k=10 53.7 74.5 72.5

average 62.1 77.9 75.8

Table 3: Recognition performance using the ITS and TS
algorithms

6. DISCUSSION

The work described in this paper has sought to provide
understanding of the relatively poor performance provided by
conventional trace-segmentation applied to speech recognition,
and to test improved versions of the algorithm.

It was initially believed that one reason for the poor
performance of the trace segmentation might be sub Nyquist
sampling of the coefficients in the speech frames. However, an



analysis of the frequency of variation of the coefficients during
the course of an utterance shows that the energy in frequencies
above 100 Hz is very small. This supports the conventional
belief that a frame sample interval of 5 ms to 10 ms is
adequate. However, it should be noted that it is still possible
that short lived, class discriminatory variations in the
coefficients may take place, but which contribute little high
frequency energy because they last for such a short time. The
frequency analysis presented in this paper does not therefore
prove that a frame sample rate of 5 ms is adequate for all
speech events.

An extension of the notion that the performance of trace-
segmentation based recognition is poor because of sub-Nyquist
sampling, is that insufficient spatial sample points are defined
along the utterance trajectory. This hypothesis has been tested
by comparing the performance obtained on the same problem
using various numbers of spatial sample points. The results are
counter intuitive: increasing the number of sample points
causes performance to deteriorate, and the optimum number of
points appears to be about 20 per utterance.

In view of these results, it was suspected that the poor
performance of the trace-segmentation based recognizer was
more probably caused by the use of an inappropriate distance
metric for segmentation. An obvious defect in conventional
trace-segmentation, (TS), is that the coefficients exhibiting the
most variation during the utterance will tend to dominate the
distance measurements upon which segmentation is based.
High variation may be due to noise rather that phonetically
significant events in the speech and so the ITS algorithm was
proposed in which each coefficient’s trajectory is segmented
separately. This leads to a very marked improvement in
performance which even exceeds that obtainable using DTW.
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