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ABSTRACT

The non-supervised Self Organizing Map of Kohonen
(SOM), the supervised Learning Vector Quantization
algorithm (LVQ3) (1], and a method based on Second-Order
Statistical Measures (SOSM) [2] were adapted, evaluated and
compared for speaker verification on 57 speakers of a
POLYPHONE-like data base. SOM and LVQ3 were trained by
codebooks with 32 and 256 codes and two statistical
measures; one without weighting (SOSM1) and another with
weighting (SOSM2) were implemented . As decision
criterion, the Equal Error Rate (EER) and Best Match Decison
Rule (BMDR) were employed and evaluated. The weighted
Linear Predictive Cepstrum coefficients LPCC and the ALPCC
were used jointly as two kinds of spectral speech
representations in a single vector as distinctive features.
LVQ3 demonstrates a performance advantage over SOM. This
is due to the fact that LVQ3 allows the long-term fine-tuning
of an interested target codebook using speech data from a
client and other speakers, whereas SOM only uses data from
the client. SOSM performs better than SOM and LVQ3 for
long test utterances, while for short test utterances LVQ is the
best method among the methods studied here.

1. INTRODUCTION

Neural network clustering algorithms have been
employed for a large number of applications such as speech
recognition and pattern recognition. It is possible that the
representation of knowledge be in the particular form of a
feature map that is geometrically organized. Kohonen showed
that a set of interconnected adaptive units has the ability to
change its responses in such a way that it will adapt to
represent the characteristics of the input signal. It is the same
as the classification problem in classical pattern recognition
such as vector quantization algorithm, where the feature
vector space is to be partitioned into a set of non-
overlapping regions, and where each region is represented by
a reference vector. In this study, the Self Organizing Map
neural network clustering technique as a non-supervised
classifier was compared to a supervised clustering technique
(LVQ3). LVQ has been used by Kohonen in a system of
phonetic recognition of Finnish and Japanese[3]. and by
Bennani et al. [4] and T. R. Anderson et al. [5] for speaker
identification. Anderson et al. used a two-stage approach to
speaker recognition. In the first stage a classification into
broad categories of vowel phonemes is done. The second
stage uses one or more of those categories for speaker
identification. Speaker-dependent codebooks are created
using a SOM technique and tuned by a LVQ3 algorithm.
Bennani obtained a performance of 97% using Mel Frequency
Cepstrum Coefficients on a data base of 10 speakers. The
second order statistical measures were proposed by

Grenier[6], Gish[7] and were recently developed by
Bimbot[2]. These measures are easy to implement and are
computationally efficient. They are expressed as a function of
the eigenvalues of a covariance matrix related to a reference
covariance matrix. These measures have frequently been used
for speaker Identification [2].

The parametric representations used in this study are
based on Linear Predictive spectra. They comprise the LPCC,
and ALPCC coefficients. These two representations proved to
be highly relevent in speaker verification tasks when they
are weighted by the reciprocal of their variability {8].

The following section provides a description of the
data base used and the processing done on this data base. A
description of the two decision criteria is given in section 3.
Supervised and non-supervised training procedures and the
SOSM mesures used are described in section 4. Experimental
results are given in section 5, and the last section provide a
conclusion

2. DATA BASE AND PROCESSING

Recorded utterances of 57 speakers (36 males and 21
females) of a POLYPHONE like data base were used in this
study. These speakers were recorded in several sessions over
more than 3 months. This data base is a telephone data base
recorded over local and long distance telephone lines using
different types of handsets. Recordings took place from the
speaker’s office or from his/her home. The Signal-to-noise
ratio was generally better than 15 dB. Recordings were done
using a DIALSYS 4 PC-board at 8kHz in logarithmic A law by
the IDIAP research center in Switzerland. Recorded utterances
were transformed to 8kHz, 16 bits linear form and pre-
emphasized by a first order filter with the transfer function of

1-0.94z"! and subsequently multiplied by a Hamming window

-function. Each analysis frame spanned 30ms and was shifted

by 10 ms. A vector of length 22 was retained which
comprised 12 LPCC and 10 ALPCC coefficients. The ALPCC
coefficients as the first-order orthogonal polynomial
coefficients represent the slope of the time-function of each
coefficient in the cepstral vector. The transitional feature
window length used here corresponds to a window width of 90
ms. Of the 57 speakers that participated in our speaker
verification experiments, 17 speakers (10 males and 7
females) were considered as targets and participated in a
training phase, and 40 others (26 males and 14 females)
played the role of imposters. A cepstral mean removal
channel compensation technique was used to remove any
fixed frequency-response distortion introduced by the
transmission system. Normalized cepstral coefficients were
obtained simply by subtracting from the cepstral coefficients
their averages over the duration of the entire telephone call.
Each coetficient in the feature vector was weighed by the
reciprocal of its standard deviation obtained using 2s of
training speech from each of the 17 targets.
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3. DECISION CRITERIA

Two decision criteria were used to evaluate the three
methods for speaker verification under study. EER cormrespond
to the intersection point of False Rejection (FR) and False
Acceptance (FA) error rate curves. This criterion has largely
been used to show the performance of speaker verification
systems. Another criterion, named the Best Match Decison
Rule (BMDR) is proposed: A general model is first created
using trainig data from a number of clients or all clients in
the training data base. Individual models for each client are
created using their training data. In a verification test, a test
utterance is compared with both the general model and the
individual model of the claimed speaker. If the best match is
to the speaker's individual model, then he/she will be
accepted (Di<Dg). and if not ie. (D; 2 Dg) he/she will be
rejected, where D; and D‘g represent the distance(distortion)

between test utterance and the indivual model of client i and
between the test utterance and the general model.
respectively. The number of times that a target was rejected
and the number of times that a non-target speaker was
accepted divided by the total number of intra- and inter-
speaker verification tests gives the FR and FA error rates,
respectively.

4. TRAINING AND VERIFICATION PROCEDURES

An Euclidean distance measure was used in this
experiment to calculate the quantization distortion. In our
experiments with the SOM method, a general prototype map
with X and y dimensions of 16, i.e. a map of 16¥16=256
cells, was obtained by using 2 seconds of speech obtained
from 17 target speakers. It serves as the initial condition for
every target speaker. The topological structure of this map
was hexagonal and the neighborhood function type was a
step function. Two learning phases were conducted to obtain
the general prototype map. In the first one the number of
training steps was 5000 with an initial radius of 16 and a
learning rate of alpha=0.05. In the second phase the number
of training steps was 12000 and the initial radius was 4 with
alpha=0.02.
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Figure 1. SOM training phase for speaker verification

The initial radius decreased linearly to | during
learning. To obtain an individual map for each speaker,
another fraining procedure was conducted. This procedure was

to start at each time with the general prototype map and to
train it by 32s of speech from a target in order to obtain an
individual map of this speaker. The number of training steps
was again 12000 and the initial radius was 4 with
alpha=0.02. In this way 17 individual maps, one map for
each target, were constructed.

In the verification phase, the vectors x(t) from a short
parameterized speech interval from the speaker under
verification are compared to both the general prototype and
the speaker's individual map. As a result, two accumulated
distortions were calculated: one between x(t) and the general
prototype map (Dg), and the other between x(t) and the
individual map (D;). The decision -made was whether the
speaker's voice matches, with minimum distortion, the
claimed speaker's individual SOM or the general prototype
SOM, using BMDR criterion. The Equal Error Rate (EER)
criterion was also used to evaluate the performance of the
SOM algorithm. A similar experiment was conducted with a

map of 4*8=32 cells.
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Figure 2. SOM verification phase using BMDR criterien

In order to apply LVQ3 to speaker verification, the
following method was proposed: for each target a set of
training feature vectors corresponding to 32 seconds of
speech data was extracted. This data comprises 16 seconds of
speech from one target speaker and 1 second from each of the
16 other target speakers in the target population. We gave a
label of 1 to those vectors belonging to the target speaker
and a label of zero to those of the other speakers. A total of
256 entries was entered in a codebook for the target speaker,
with 128 vectors from the target speaker and 128 vectors
from other speakers. These codebook vectors were extracted
from the training set and were supposed to fall inside the
class borders, which were tested automatically by a knn (k-
nearest-neighbors) classifier using k=7. Training of this
initial target codebook using the LVQ3 algorithm was done
using the training feature vectors of this speaker. The
following configuration for LVQ3 parameters was chosen:
alpha=0.02, window width = 0.2, epsilon = 0.2, and the
number of training steps = 10000.

In the verification phase, the feature vector of a test
utterence was compared to all vectors in the codebook and the
label of codebook-vector with the smallest distance to this
feature vector was considered. This procedure was repeated for
all feature vectors in the test utterance. A verification score
was obtained which is equal to the number of testing vectors
classified with the label 1. A speaker was accepted if his
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verification score was higher than a decision threshold,
otherwise he/she was rejected.
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Figure 3. LVQ3 training phase for speaker verification

The principle of LVQ3 training for speaker
verification doesn't alow the creation of a general model of
speakers to be used by BMDR. So only EER criteria can be
used to obtain the verification error rate. A similar
experiment with a codebook size of 32 was also conducted.
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Figure 4. LVQ speaker verification phase

Two following Second Order Statistic Mesures
(SOSM1 et SOSM2) were implemented:
- SOSM1: an arithmetic-harmonic sphericity distance
measure between a test covariance matrix Y and a reference
covariance matrix X is defined as:

A
H AH &X. Y) =log []

- SOSM2: the weighted symetric sphericity mesure proposed
by (2] as defined as:

K SPH sym X, Y)=p mqp - log (tr (YX-1)) + p pyy - log (tr (XY-1))

1 det(Y)
me (P mn-Pnm) . logl -(I:I(TX_) } - log ()

n

and - p oy = m+n

ith: __m
WL P n =T

where m represent the number of training vectors and n the
number of test vectors.

A General and for each client an individual covariance
matrix were obtained using the same size of training speech
material used already for training of SOM. Similar
experiments with SOM, LVQ3, and second order statistic
measures were conducted for test utterances with 1s, 2s, 3s,
6s. 9s. 12s. and 15s duration.

5. EXPERIMENTAL RESULTS

Tables 1, 2, et 3 show the performance of SOM, LVQ3,
and SOSM as a function of test utterance durations of 1s, 2s,
and 3s for different codebook sizes and decision criteria. Error
rates were obtained by conducting 1989 intra-speaker and
1790 inter-speaker verification tests. Figure 5 shows the EER
of the three methods for test utterances up to 15s in lenghts.

| 3s 2s 1s
FR |FA [TE |FR |FA [TE |FR |FA [IE
R R R
a 256 11 B3 R2 14 B4 k4 |16 B7 6

Yl |l ol 1% 1% 1% |% |%
iz P2+ 5% l61 B3 7% 59 B3 [10 b4 B2
% |% % |% |% |% |%

* Error rate obtained by the Equal Error Rate criterion.
+ Error rate obtained by the “Best Match Decision Rule”

Table 1. FR. FA, Total Error Rate: TER = (FR+FA)/2, and EER
obtained by SOM as a function of test utterance duration and
codebook size.

TEST UTTERANCE
DURATION
. 3s 2s 1s
I] CODEBOOK 256 14.6 % 17 % 20.5 %
SIZE 32 17.0% | 203 % | 243 %

TABLE 2. The EER obtained by LVQ3 as a function of test
utterance duration and codebook size.

TEST UTTERANCE DURATION |
I |

I

{{ SOsM! | BMDR | 315 % |

fl EER | 213% [ 267% | 359%
F'sosmM2 | BMDR | 33,2% 332% | 340% |}
|| EER | 184% | 248% | 336% |

Table 3. Speaker verification errors obtained by EER and
BMDR criteria obtained by the SOSM1 and SOSM2 as a
function of utterance duration.

6. DISCUSSION AND CONCLUSION

Tables 1 and 2 show a higher performance for LVQ3 in
relation to SOM. A codebook size of 256 comparing to a
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codebook size of 32, gives a better performance for both LVQ
and SOM. It should be noticed that in our experiments with
the SOM, 32s of speech material were used to train each target
model, while for LVQ3 we used only 16s of speech material
from the target speaker. The rest of the necessary training
data was obtained from a very short duration of speech (only
ls) from each of the other speakers in the target population.
Therefore in LVQ3, a shorter utterance recorded by each target
speaker would be sufficient to train a target model. In order to
create a single speaker's model, LVQ3 employs possible data
from all speakers in the population. This model can capture
the differences between that speaker and other speakers and
so it contains information that allows it to verify the target
to whom this model belongs and to reject impostors.
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Figure 5. EER obtained for SOM, LVQ3. and the Second Order
Statistic Measures (SOSM1 and SOSM2) as a function of test
utterance duration.

A model trained by the SOM as a non-supervised
technique uses only a similarity measure and uses data from
only one target without taking into consideration the
differences between this speaker and other speakers. Figure 1
shows that the LVQ3 comparing to SOM and SOSM gives a
better performance for test durations less than 5 seconds. But
the SOMS1 and SOSM2 are better than the SOM and LVQ3
methods for longer test utterances. Based on figure |, when
the test utterance duration increases, the EER deacreases
strongly for SOSM1 and SOSM2 compared to SOM and
LVQ3. This result may show that short test utterances are not
sufficient for calculating a covariance matrix which
represents a speaker well. As can be seen from figure 1. when
the test utterance duration is longer than a certain duration,
the error rate doesn't change significantly. For example, for
test utterance durations greater than 9 seconds, there is no
important improvement in the performance of the three
methods especially for the SOSM1. The SOSM1 gives a 2.9%
error rate when test duration is about 15 seconds. SOSM2
performs better than SOSM1 for short test utterances. But for
test utterances up to 2s in lengths, SOSM1 performs better.

The EER shows generaly smaller error rates than the
BMDR for the SOM algorithm. Using the EER criterion, the
distance (distortion) between the test utterance of a given
speaker and its reference model is compared to the decision
threshold of this speaker and the result is used as the bases for
accepting or rejecting him/her. Using the BMDR criteria.
there is no a priori procedure for determining the decison

threshold, and the decision threshold for a given speaker is
the distance obtained by comparing a test utterance produced
by this speaker to the general model. So the decison
threshold is determined as a function of the test utterance. A
comparison between the error rates obtained by EER and
BMDR (tables | and 3), shows that the error rate obtained by
BMDR doesn't change significantly as a function of test
utterance duration. The FR error rate provided by BMDR is
usually much less than the FA error rate. This may be
explained in the following way: when a test utterance which
belongs to a target speaker is compared to both the target's
reference model and a general model, the distortion (distance)
between the test utterance and the target's reference model
must be inferior to the distortion (distance) between this
utterance and a the general model. This is because an utterance
produced by a speaker is usually more similar to its reference
model than to any other model. However, when the test
utterance belongs to an impostor, it is less probable that the
the distortion (distance) between this utterance and the
general model be necessarily inferior to the distortion
(distance) between this utterance and the reference model of
the target. A small FR error rate may be more useful for some
applications where a client should be rejected as seldom as
possible.
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