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ABSTRACT

In this paper, a segmental probabilistic model based on an
orthogonal polynomial representation of speech signals is
proposed. Unlike the conventional frame based probabilistic
model, this segment based model concatenates the similar
acoustic characteristics of consecutive frames into an acous-
tic segment and represents the segment by an orthogonal
polynomial function. An algorithm which iteratively per-
forms recognition and segmentation processes is proposed
for estimating the parameters of the segment model. This
segment model is applied in the text independent speaker
verification. For a 20-speaker database, the experimental
results show that the performance by using segment mod-
els is better than that by using the conventional frame based
probabilistic model. The equal error rate can be reduced
by 3.6% when the models are represented by 64-mixture
density functions.

1. INTRODUCTION

Recently, Hidden Markov Model(HMM) was proposed for
speaker recognition applications [2, 3, 4]. HMM is a method
for modeling the speaker’s acoustic space by probability.
Matsus and Furui showed that the performance of speaker
verification by HMM was better than that by the tem-
plate modeling methods. However, for most of speaker
recognition systems, the speaker model is a frame-based
model[3, 4]. For a frame-based HMM, the observation prob-
ability in every state is obtained by a frame-based proba-
bility density function, but the observation probability den-
sity function at different states could be different. The ob-
served frames in the same state should use the same prob-
ability density function to compute the observation proba-
bility. By using an N-state HMM to obtain the statistic of
a given acoustic segment, we consider this acoustic segment
as being piecewisely concatenated by N-state subsegments
and its characteristic is obtained by a composition of state-
by-state distribution. Furthermore, the statistics of frames
over the same state are assumed to be independent in the
frame-based HMM. This assumption is not good for speech
signals since speech signals are short time stationary signals
and the signals over the short-time state are dependent.

In this paper, we consider the speech signal as being com-
posed of a sequence of stationary segments instead of frames.
The states in HMM are segment-based states, not frame-
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based states. The spectral continuity over a segment is kept,
and the probability distribution for this segment model is
not longer a piecewise distribution over subsegments like the
frame-based model at the same state. Moreover, the depen-
dence between frames and the behavior of signal variation
can be preserved.

Although there are good reasons to use a segment-based
model for modeling speech signals, the methods of repre-
senting the segments, generating the segment model, and
segmenting the speech signals should be proposed. The
simplest way for generating a segment model is to segment
speech signals every N frames[5], and then use the EM al-
gorithm to generate the segment model. For this segment
method, the training data and the size of model should
be large enough to capture most of behavior of speech sig-
nals. The other method for generating a segment model was
proposed by Ostendorf etc[6], and was successfully applied
for speech recognition. Although good results are given,
a lot of memories are needed for storing the parameters
of segment models. In this paper, a new segment model
is proposed for text independent speaker recognition. A
segment, which is composed of L successive N-dimensional
feature vectors, is considered to be a set of N trajectories
whose lengths are equal to L. The previous study[4] showed
that the performance depended on the acoustic resolution,
i.e., the number of states multiplied by the number of mix-
tures. We can maintain the acoustic resolution by using
a single-state model with more mixtures. The observation
probability dersity function of our segment model is de-
scribed by a mixture of gaussian probability density func-
tions, which are represenied by three parameters, (A, U, C).
Here A is the mixture means, U is the covariance matrix,
and C is the weights on the mixtures. A mapping function
F is used to map the mixture means into a time sequence
of feature vectors. In this paper, the mapping function F
is the orthogonal polynomial function. Then the mixture
means are a set of the orthogonal polynomial coefficients.
It is not easy to simultaneously estimate this model and
the segment boundary. An iterative method to generate
the segment-based speaker model is proposed in this pa-
per. For the same database and experimental conditions,
the segment-based model can perform better than the con-
ventional frame-based models.

The other parts of this paper are organized as follows. Sec-
tion 2 describes our new segmental probabilistic model and
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discusses the approach to derive this segment model. Databases where B is a possible segment boundary in the set

and experiments are given in Section 3. Section 4 gives a
brief summary to our proposed method.

2. SEGMENTAL PROBABILISTIC
MODEL(SPM)

SPM is a segment based model. The smallest unit for SPM
is an acoustic segment. Several successive frames with sim-
ilar characteristics are concatenated into an acoustic seg-
ment. Thus, for a given speech signal, we need to partition
this speech signal into several acoustic segments according
to some criterion. The number of segments, the length for
each segment and the SPM are simultaneously determined
in the training phase. In the following sections, we discuss
the representation of SPM, the optimal criterion for gener-
ating the SPM, and the way of partitioning speech signals
according to the given criterion.

2.1. REPRESENTATION OF SEGMENTS BY
THE ORTHOGONAL POLYNOMIAL
FUNCTION

Since SPM is a segment-based model, the parameters in this
model should be mapped into a time sequence of vectors,
and then the likelihood between a time sequence of given
vectors and mapping vectors could be computed. Given a
set of orthogonal coefficients, {ao,---,a,,---,ar}, we can
use the following formula to regenerate a time sequence of
L-length feature vectors, X; = {z(1),---,z(l),---,z(L)}.
This mapping formula is given by

Xi = FALR), ¢y
with the column vector z(l} equal to
R
2()= ardf(l), for 1=1,---,1, 2)
r=0

where F is the orthogonal polynomial function whose in-
put arguments are a set of orthogonal coeficients A, the
segment length L and the degree of the orthogonal polyno-
mial function, R. ¢Z(l) is a polynomial of degree r. The
dimension of a feature vector z(I) is assumed to be d. This
assumption is also used for all following sections.

2.2. FORMULATION OF THE SPM
A SPM is represented by
A= {Cm;AR,m, Umlm = 1, .o .’M},

where Aq,m = [a0,m, - *,8r,m, - -,8R,m] is a set of orthog-
onal coefficients which are used to generate segment mean
according to eqns.(1) and (2), ar,m is an orthogonal coeffi-
cient vector for an orthogonal polynomial of degree r, U, is
the d x d dimensional covariance matrix, ¢y, is the mixture
weight and M is the total number of mixtures. For a set of
signal feature vectors, X = {z(1),.--,z(t),---,z(T)}, the
log-likelihood for this signal X is given by

J-1
log P(X]A) = max > " log P(X;|A, B), (3)

=0

{bo,---,b5,---,bslb; € bj—1+1,T}, for j=1,.--,7
with bo=0 and b; =T}, (4)
J is the number of partitioned segments in accordance with

B, X; = {z(b; + 1),---,z(b;4+1)} is the jth segment,
log P(X;|A, B) is defined as

M
log P(X;|A, B) =108 Y _ cm P(X;|AR,m,Um, B), (5)

where
P(X;|Ar,m,Um, B) = (6)
bi41
[I @0 410l expl-5 00U o (1)), (7)
t=bj+l
R
W(t) = (1)~ anmét e -b). ()

Eqn.(3)illustrates that the maximum log-likelihood log P(X|A)
is obtained by choosing the optimal segment boundary from
all possible segment boundaries of eqn.(4). The dynamic
programming algorithm[8] can be used to find the optimal
segment boundary for a given speech signal.

Since SPM is a segment model, the model parameters and
the segment boundary should be simultaneously estimated.
Thus, in the training phase, the optimal criterion is to find
the optimal segment boundary B,, and the model param-
eters Aop such that the log-likelihood log P(X|Acp, Bop)
is maximum for the given training feature vectors, X =

{z(1),---,2(T)}. log P(X|Aop, Bop) is defined as

J-1
log P(X|Acp, Bop) = max > log P(X;1A,B),  (9)
1=0

where B is a possible segment boundary in the set of eqn.(4),
log P(Xj|A, B) is defined as eqn.(5) and J is the number of
partitioned segments. It is not an easy task to directly
solve eqn.(9) for obtaining the segment boundary and the
segment model. In this paper, we propose an iterative al-
gorithm to solve eqn.(9). The procedures are estimation
of the segment model using the known boundary, and then
estimation of the segment boundary using the known seg-
ment model. These two estimation procedures are iterated
until this algorithm is converged. We depict this algorithm
as follows.

[ Iterative Algorithm : |

(1) Initialization :

initially guess B®, and set i to 1.

The initial segment boundary is obtained by the maxi-
mum likelihood segmentation method{7] except the gaus-
sian mean is represented by the orthogonal polynomials.
(2) Reestimation of the segment model using the
known segment boundary :

346



The new segment model A’ for the known segment bound-
ary B*~! is obtained by maximizing the following log-likelihood
function,

Ji-l.g
log P(X|A', B ) =max Y log P(X;|A’, B'™). (10)
A

=0

The EM algorithm can be used to solve the above equation.
(3) Reestimation of the segment boundary using the
known segment model :
The new segment bouudary B’ for the known segment model
A’ are determined by maximizing the following log-likelihood
function,

log P(X|A', BY) = mnglog P(X;|A',B).  (11)

j

The above equation can be solved by the dynamic program-
ming algorithm[8].
(4) Termination : If it is converged, then stop; otherwise
set 1 to 1 +1 and go to step 2.
It can be shown that the sequence of the log-likelihoods is
increased with the iteration time. For the sth iteration of
the segment model A’ the log—hkehhood log P(X |AY, B*-Y)
is greater than log P(X]A*~!, B*~") since A" is the optimal
model for the segment boundary B!, Similarly, the log-
likelihood log P(X|A’, B) is greater than log P(X|A', B*~1)
since the segment boundary B' are the optimal boundary
for the segment model A'. Thus, we have the relation,

log P(X|A*™!, B"™) < log P(X|A’, B™') < log P(X|A’, BY),

at the sth iteration.
iterations, we have

log P(X|A®, B°) < -

By extending this relation to other

<log P(X|A', B') < -

This relation indicates the increase of log-likelihood by the
above iterative algorithm. Speaker models are obtained by
the above training procedure. In the verification phase, the
scores of the test utterances for a claimed speaker model
A are computed, and then compared with the threshold
associated with this speaker model to verify the identity of
a claimed speaker. The posteriori equal error rate is used
to measure the system performance.

3. DATABASES AND EXPERIMENTS
DATABASES

The database[1] used in the following experiments consists
of 20,000 isolated digit utterances recorded by 100 speakers,
50 males and 50 females. The utterances were recorded over
dialed-up local telephone lines. Each speaker was asked to
utter 200 digits, 20 repetitions of each digit, in five record-
ing sessions over a period of two months. In each recording
session, the speakers were prompted to utter four complete
sets of the digits with random order. The first 20 speakers
in 100-speaker database are used for the experiments. The
first 80 utterances of each speaker are used for training and
the rest 120 utterances are used for testing. The average of
equal error rates is obtained by alternatively choosing one

3.1.
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Figure 1: The equal error rates of SPM for different digital
lengths and mixture numbers.

of 20 speakers as a claimed speaker and then taking the
average of these equal error rates.

All of utterances are bandpass filtered from 200 to 3200 Hz
and sampled at 6.67 kHz. The digitized speech signal is
preemphasized using the filter, H(z) = 1 — 0.95z~. Nine
autocorrelation coefficients are calculated over 45 msec af-
ter a Hamming windowing and shifted by every 15 msec.
These autocorrelation coefficients are used to calculate 8
cepstral coefficients. Diagonal covariance matrix is used for
all probabilistic models.

3.2. EXPERIMENTS

There are several experiments to be done. The first part of
experiments is to evaluate the performance of the SPM for
speaker verification by varying the mixture number and the
degree of the orthogonal polynomial. The second part of ex-
periments is to compare the performance of the SPM with
that of the conventional frame based probabilistic model.
A. Evaluating the performance of the SPM :

The mixture number in SPM represents that the number
of acoustic segments is used for modeling speaker’s charac-
teristics. The larger the mixture number is, the higher the
spectral resolution for speaker model can be obtained. To
evaluate the mixture number on the performance of speaker
verification, the first experiment is given to examine the
performance of the speaker verification system for differ-
ent mixture numbers. In the all following experiments the
searching window size is set to 9 for the training and the
verification phases.

Fig.1 shows the equal error rates of the SPM for differ-
ent digital lengths and mixture numbers. The degree of
the orthogonal polynomial used in this experiment is set to
3. The results show that the equal error rate is reduced
as the digital length or the mixture number are increased.
As the mixture number is beyond 32, the improvement be-
comes saturated. This indicates that the mixture number
equal to 32 is good enough to represent the speaker’s char-
acteristics. The degree of the orthogonal polynomial affects
the accuracy of the SPM. The smallest length of a parti-



tioned segment is determined by the degree of the orthogo-
nal polynomials. For an r-degree orthogonal polynomial to
be used, the smallest length for any partitioned segment is
(r +1). Thus, the type of the basic segment for the SPM
and its characteristics depends on the degree of the orthog-
onal polynomials. Besides, computation time and memory
storage are affected by the degree.

Table 1 shows the influence of the degree of the orthogo-
nal polynomials on the performance of speaker verification.
The test digital length used in this experiment is equal to
1. The results show that the best performance is in the
degree equal to 3 and the improvement from the Oth de-
gree to the first degree is the greatest one. Moreover, as
the degree is greater than 1, the improvement is small. We
also find that as the degree is greater than 3, the accuracy
rate is decreased. For higher degree orthogonal polynomi-
als, we need a larger training database to obtain a more
reliable model which is robust to test utterances. However,
for lower orthogonal polynomials, the accuracy of the SPM
is worse. This is just a tradeoff problem. A better choice is
to use the third degree orthogonal polynomial.

Table 1: The equal error rates(%) for different degrees of
orthogonal polynomials.

degree of no. of test utterances
orthogonal polynomials 1 4 7
0 11.33 | 3.40 1.87
1 8.52 | 2.33 1.63
2 7.79 | 1.82 1.05
3 7.49 1.78 0.86
4 7.92 1.90 1.19

B. Comparing the performance of the SPM with
that of the conventional frame based probabilistic
model :

Frame based probabilistic Model(FBPM) is one of good
models used for speaker verification[4]. In this experiment,
FBPM is used as a baseline model. The degree of the or-
thogonal polynomial for the SPM is set to 3. The mixture
number for FBPM and SPM is set to 64. The searching
window size is constrainted to 9.

Table 2 shows the performance of the FBPM and the SPM
for different digital lengths and mixture numbers. The re-
sults clearly show that the performance of the SPM is better
than that of the FBPM. For the less mixture number and
digital length, the equal error rate by the SPM is much less
than that by the FBPM. As compared with the results in
Table 1, the performance of the FBPM is still worse than
those of SPM with the degree of the orthogonal polynomial
greater than 0.

4. SUMMARY

In this paper, a segmental probabilistic model based on the
orthogonal polynomial representation of speech signals was
proposed. The spectral dependence and the spectral conti-
nuity over the intra-segment are captured into this model.
An iterative algorithm was proposed to estimate the SPM.

Table 2: The equal error rates(%) for SPM and FBPM

model no. of no. of test utterances

type mixtures 1 4 7
16 10.79 § 3.46 1.72

SPM 32 8.15 | 2.17 0.95
64 749 | 1.78 0.86
16 15.74 | 6.61 4.10

FBPM 32 12.44 | 4.48 2.72
64 11.08 | 3.18 1.89

Experiments showed that the performance of the SPM was
better than that of the conventional FBPM. For the less
mixture number, the improvement by the SPM is greater
than that by FBPM. The degree of the orthogonal polyno-
mial used for the SPM would affect the performance of the
SPM. The results showed that the best degree was set to 3.
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